Skip to main content
Log in

Performance improvement of a cyclone separator using spiral guide vanes with variable pitch length

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study proposes a new design to improve the performance of a cyclone separator by placing a spiral guide vane with variable pitch length in its cylindrical section. The first pitch length varies in the range of L = 40–160 mm, and spiral guide vane turns are 0.5–3. Three-dimensional simulations are performed using ANSYS FLUENT software when the Reynolds stress model and Eulerian–Lagrangian particle tracking approach are utilized to collect particles with a diameter range of 0.1–13 μm. The results show that the guide vane has a pivotal effect on the flow field, erosion rate, and performance of the cyclone. It is found that the cyclone with a 0-turn guide vane can separate 7-μm particles, while the cyclone with L = 40 mm and a 3-turn guide vane can collect 2.45 μm particles with 100% collection efficiency. As the pitch length increases, fewer particles are captured for a certain amount of spiral guide vane turns. The results demonstrate that the maximum erosion rate corresponds to a 3-turn spiral guide vane when L = 40 mm. However, the amount of erosion rate of the cyclone with higher L is less than that of the cyclone with a 0-turn guide vane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Cyclone inlet height, m

A face :

Cyclone surface, m2

b :

Cyclone inlet width, m

\({C}_{D}\) :

Drag coefficient

\({d}_{\mathrm{p}}\) :

Particle diameter, m

\({d}^{^{\prime}}\) :

Standard diameter, m

D :

Cyclone body diameter, m

D x :

Outlet diameter, m

\({E}_{\mathrm{V}}\) :

Volumetric erosion

\(f(\mathrm{a})\) :

Function of the impact angle

\({F}_{\mathrm{D}}\) :

Drag force, N

h :

Inner cone height, m

h c :

Cone height, m

H t :

Height of cyclone, m

\({H}_{\mathrm{V}}\) :

Vickers hardness

k :

Turbulent kinetic energy, J

L :

First pitch length, m

L i :

Duct length, m

L e :

Outlet tube length, m

\(\dot{{m}_{\mathrm{p}}}\) :

Mass flow rate of particles, kg/s

\(\overline{p }\) :

Average pressure, Pa

N p :

Number of particles

\({r}_{\mathrm{P}}\) :

Particle radius, m

\({R}_{\mathrm{ij}}\) :

Reynolds stress tensor, Pa

\({\mathrm{Re}}_{\mathrm{p}}\) :

Particle Reynolds number

S :

Outlet duct length, m

t :

Time, s

\({t}_{\mathrm{res}}\) :

Resident time, s

\(\overline{u }\) :

Average velocity, m/s

\({u}_{\mathrm{A}}\) :

Air velocity, m/s

\({u}_{\mathrm{P}}\) :

Particle velocity in axial direction, m/s

\({v}_{\mathrm{P}}\) :

Particle velocity in radial direction, m/s

V :

Volume of the cyclone, m3

\(V\) P :

Particle impact velocity, m/s

\({V}^{\mathrm{^{\prime}}}\) :

Standard velocity, m/s

\({w}_{\mathrm{P}}\) :

Particle velocity in tangential direction, m/s

\({\rho }_{\mathrm{g}}\) :

Gas density, kg/m3

\({\rho }_{\mathrm{p}}\) :

Particle density, kg/m3

\({\rho }_{\mathrm{w}}\) :

Wall density, kg/m3

ε :

Turbulence dissipation, m2/s3

μ :

Dynamic viscosity, Pa.s

\(\nu \) :

Kinematic viscosity, m2/s

References

  1. Dehdarinejad E, Bayareh M (2021) An overview of numerical simulations on gas-solid cyclone separators with tangential inlet. ChemBioEng Rev. https://doi.org/10.1002/cben.202000034

    Article  Google Scholar 

  2. Zhang P, Duan J, Chen G, Wang W (2019) Numerical investigation on gas-solid flow in a circumfluent cyclone separator. Aerosol Air Quality Res 19:971–980

    Article  Google Scholar 

  3. Wakizono Y, Maeda T, Fukui K, Yoshida H (2015) Effect of ring shape attached on upper outlet pipe on fine particle classification of gas-cyclone. Sep Purif Technol 141:84–93

    Article  Google Scholar 

  4. Brar LS, Sharma RP, Elsayed K (2015) The effect of the cyclone length on the performance ofstairmand high-efficiency cyclone. Powder Technol 286:668–677

    Article  Google Scholar 

  5. Huang AN, Ito K, Fukasawa T, Yoshida H, Kuo HP, Fukui K (2018) Classification performance analysis of a novel cyclone with a slit on the conical part by CFD simulation. Sep Purif Technol 190:25–32

    Article  Google Scholar 

  6. Qiang L, Qinggong W, Weiwei X, Zilin Z, Konghao Z (2020) Experimental and computational analysis of a cyclone separator with a novel vortex finder. Powder Technol 360:398–410

    Article  Google Scholar 

  7. Misiulia D, Andersson AG, Lundstrom TS (2017) Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet. Powder Technol 305:48–55

    Article  Google Scholar 

  8. Huang A, Maeda N, Shibata D, Fukasawa T, Yoshida H, Kuo H (2017) Influence of a laminarizer at the inlet on the classification performance of a cyclone separator. Sep Purif Technol 174:408–416

    Article  Google Scholar 

  9. Safikhani H, Zamani J, Musa M (2017) Numerical study of flow field in new design cyclone separators with one, two and three tangential inlets. Adv Powder Technol. https://doi.org/10.1016/j.apt.2017.12.002

    Article  Google Scholar 

  10. Qian F, Wu Y (2009) Effects of the inlet section angle on the separation performance of a cyclone. Chem Eng Res Des 87(12):1567–1572

    Article  Google Scholar 

  11. Hamdy O, Bassily MA, El-Batsh HM, Mekhail TA (2017) Numerical study of the effect of changing the cyclone cone length on the gas flow field. Appl Math Model 46:81–97

    Article  MathSciNet  MATH  Google Scholar 

  12. Gimbun J, Chuah TG, Choong TSY, Fakhru’l-Razi A (2005) Prediction of the effects of cone tip diameter on the cyclone performance. J Aerosol Sci 36(8):1056–1065

    Article  Google Scholar 

  13. Wu X, Chen X (2019) Effects of vortex finder shapes on the performance of cyclone separators. Environ Prog Sustainable Energy. https://doi.org/10.1002/ep.13168

    Article  Google Scholar 

  14. Vignesh R, Balaji D, Surya M, Vishnu Pragash A, Vishnu R, 2018 Numerical Modelling of Spiral Cyclone Flow Field and the Impact Analysis of a Vortex Finder. In: innovative design, analysis and development practices in aerospace and automotive engineering (I-DAD) 363–372

  15. Tsai C-J, Chen D-R, Chein H, Chen S-C, Roth J-L, Hsu Y-D, Biswas P (2004) Theoretical and experimental study of an axial flow cyclone for fine particle removal in vacuum conditions. J Aerosol Sci 35(9):1105–1118

    Article  Google Scholar 

  16. Li Q-P, Xu Y-J, Du L-H (2015) Numerical simulation of JLX cyclone separator with guiding vane. Chin J Chem Eng 43(1):37–41

    Google Scholar 

  17. Pan CJ, Jin ZW, Feng X (2012) Research on the spiral guiding and the back-mixing preventing of cyclone separating devices. Chin J Chem Ind Eng Prog 31(6):1215–1219

    Google Scholar 

  18. Gong G, Yang Z, Zhu S (2012) Numerical investigation of the effect of helix angle and leaf margin on the flow pattern and the performance of the axial flow cyclone separator. Appl Math Model 36(8):3916–3930

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou F, Sun G, Han X, Zhang Y, Bi W (2018) Experimental and CFD study on effects of spiral guide vanes on cyclone performance. Adv Powder Technol 29(12):3394–3403. https://doi.org/10.1016/j.apt.2018.09.022

    Article  Google Scholar 

  20. Dehdarinejad E, Bayareh M, Ashrafizaadeh M (2021) A numerical study on combined baffles quick-separation device. Int J Chem React 19(5):515–526

    Article  Google Scholar 

  21. Oka YI, Yoshida T (2005) Practical estimation of erosion damage caused by solid particle impact: part 2: mechanical properties of materials directly associated with erosion damage. Wear 259:102–109. https://doi.org/10.1016/j.wear.2005.01.040

    Article  Google Scholar 

  22. Oka YI, Okamura K, Yoshida T (2005) Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation. Wear 259:95–101. https://doi.org/10.1016/j.wear.2005.01.039

    Article  Google Scholar 

  23. Hoekstra.A.J, (2000) Gas flow field and collection efficiency of cyclone separators doctoral thesis, In: Delft University of Technology

  24. Kaya F, Karagoz I (2008) Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones. Curr Sci 94:1273–1278

    Google Scholar 

  25. Zhao B (2005) Development of a new method for evaluating cyclone efficiency. Chem Eng Process Process Intensif 44:447–451

    Article  Google Scholar 

  26. R.E. Vieira, S. Sajeev, S.A. Shirazi, B.S. McLaury, G. Kouba, (2015) Experiments and modeling of sand erosion in gas-liquid cylindrical cyclone separators under gas production and low-liquid loading conditions, in: 17th Int. Conf. Multiph. Prod. Technol., BHR Group

  27. Dehdarinejad E, Bayareh M, Ashrafizaadeh M (2022) Impact of cone wall roughness on turbulence swirling flow in a cyclone separator. Chem Pap. https://doi.org/10.1007/s11696-022-02261-6

    Article  Google Scholar 

  28. Foroozesh J, Parvaz F, Hosseini SH, Ahmadi G, Elsayed K, Babaoğlu NU (2021) Computational fluid dynamics study of the impact of surface roughness on cyclone performance and erosion. Powder Technol 389:339–354

    Article  Google Scholar 

  29. Doheim MA, Gawad AFA, Mahran GMA, Abu-Ali MH, Rizk AM (2013) Numerical simulation of particulate-flow in spiral separators: part I. low solids concentration (0.3% & 3% solids). Appl Math Model 37:198–215

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bayareh.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehdarinejad, E., Bayareh, M. Performance improvement of a cyclone separator using spiral guide vanes with variable pitch length. J Braz. Soc. Mech. Sci. Eng. 44, 516 (2022). https://doi.org/10.1007/s40430-022-03788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03788-1

Keywords

Navigation