Skip to main content

Advertisement

Log in

Design of vortex finder structure for decreasing the pressure drop of a cyclone separator

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The structure of the vortex finder has an important influence on the pressure drop and separation efficiency of a cyclone, which mainly governs the separation process. In this paper, the traditional vortex finder is slotted on side wall and its bottom is closed, i.e., a slotted vortex finder. The impact of slotted vortex finder on the separation performance of a cyclone is explored by using numerical simulation and experimental validation. Specifically, the gas phase is studied by the Reynolds stress model (RSM), and the particle phase is simulated by the discrete phase model (DPM). The simulation results are in good agreement with the experimental results, revealing higher prediction accuracy. The results indicate that the slotted vortex finder can effectively suppress the generation of the downward swirling flow at the center of the vortex finder and decrease the turbulence intensity at the bottom of the vortex finder and the outer vortex, thereby decreasing the energy loss and increasing the separation efficiency When the slot length is 0.2De, the slotted vortex finder can reduce the pressure drop by 143.33 Pa while increasing the collection efficiency by 5.51%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hiraiwa, T. Oshitari, K. Fukui, T. Yamamoto and H. Yoshida, Sep. Purif. Technol., 118, 670 (2013).

    Article  CAS  Google Scholar 

  2. A. C. Hoffmann and L. E. Stein, Gas cyclones and swirl tubes: principles, design and operation, 2nd Ed., Springer, Berlin (2008).

    Google Scholar 

  3. K. S. Lim, H. S. Kim and K. W. Lee, J. Aeros ol Sci., 35, 743 (2004).

    Article  CAS  Google Scholar 

  4. F. Tan, I. Karagoz and A. Avci, Chem. Eng. Commun., 203, 1216 (2016).

    Article  CAS  Google Scholar 

  5. R. Arman, S. Mehrzad, F. Meisam and E. Reza, Chem. Eng. Process., 47, 128 (2008).

    Article  Google Scholar 

  6. S. E. Rafiee and M. M. Sadeghiazad, Aerospace Sci. Technol., 63, 110 (2017).

    Article  Google Scholar 

  7. G. Jolius, T. G. Chuah, A. Fakhru’ l-Razi and S. Y. Thomas, Chem. Eng. Process., 44, 7 (2005).

    Article  Google Scholar 

  8. W. D. Griffiths and F. Boysan, J. Aerosol Sci., 27, 281 (1996).

    Article  CAS  Google Scholar 

  9. A. J. Hoekstra, J. J. Derksen and H. E. A. Van Den Akker, Chem. Eng. Sci., 54, 2055 (1999).

    Article  CAS  Google Scholar 

  10. M. D. Slack, R. O. Prasada, A. Bakkera and F. Boysana, Chem. Eng. Res. Design, 78, 1098 (2000).

    Article  CAS  Google Scholar 

  11. L. Z. Wang, J. M. Feng, X. Gao and X. Y. Penga, Chem. Eng. Res. Design, 117, 394 (2017).

    Article  CAS  Google Scholar 

  12. Q. Li, W. W. Xu, J. J. Wang and Y. H. Jin, Sep. Purif. Technol., 141, 53 (2015).

    Article  CAS  Google Scholar 

  13. H. M. El-Batsh, Appl. Math. Model., 37, 5286 (2013).

    Article  Google Scholar 

  14. J. H. Chen and X. Liu, Sep. Purif. Technol., 73, 100 (2010).

    Article  CAS  Google Scholar 

  15. E. Khairy and L. Chris, Comput. Fluids, 51, 48 (2011).

    Article  Google Scholar 

  16. L. S. Brar, R. P. Sharma and R. Dwivedi, Part. Sci. Technol., 33, 34 (2015).

    Article  CAS  Google Scholar 

  17. Y. Zhu and K. W. Lee, J. Aerosol Sci., 30, 1303 (1999).

    Article  CAS  Google Scholar 

  18. S. E. Rafiee and M. M. Sadeghiazad, J. Marine Sci. Appl., 15, 388 (2016).

    Article  Google Scholar 

  19. X. Gao, J. F. Chen, J. M. Feng and X. Y. Peng, Comput. Fluids, 92, 45 (2014).

    Article  Google Scholar 

  20. P. Farzad, H. H. Seyyed, A. Goodarz and E. Khair y, Sep. Purif. Technol., 187, 1 (2017).

    Article  Google Scholar 

  21. B. B. Pei, L. Yang, K. J. Dong, Y. C. Jiang, X. S. Du and B. Wang, Powder Technol., 313, 135 (2017).

    Article  CAS  Google Scholar 

  22. S. E. Rafiee and M. M. Sadeghiazad, J. Marine Sci. Appl., 15, 157 (2016).

    Article  Google Scholar 

  23. S. B. Lakhbir and K. Amit, CFD simulations of cyclone separators with different diameters, 2015 1st international conference on futuristic trends on computational anslysis and knowledge management, 180 (2015).

    Google Scholar 

  24. J. A. Feng, X. Q. Tang and W. B. Wang, J. Shehez i Univ.: Natural Sci., 35, 52 (2017).

    Google Scholar 

  25. J. J. Wang, L. Z. Wang and C. W. Liu, Chin. J. Process Eng., 5, 251 (2005).

    Google Scholar 

  26. A. C. Hoffmann, L. E. Stein and P. Bradshaw, Appl. Mech. Rev., 56, B28 (2003).

    Article  Google Scholar 

  27. Y. H. Jin, G. Q. Ji, Q. Y. Cao and J. J. Wang, J. China Univ. Petroleum, 32, 109 (2008).

    Google Scholar 

  28. B. Wang and A. B. Yu, Chem. Eng. J., 135, 33 (2008).

    Article  CAS  Google Scholar 

  29. Y. X. Su, A. G. Zheng and B. T. Zhao, Powder Technol., 210, 293 (2011).

    Article  CAS  Google Scholar 

  30. G. B. Sakura and A. Y. T. Leung, Powder Technol., 286, 488 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Shihezi University Key Research Youth Program of Application Foundation (No. 2015ZRKXYQ04) and the National Natural Science Foundation of China (No. 51264034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junzhi Yu or Weibing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yu, J., Wang, W. et al. Design of vortex finder structure for decreasing the pressure drop of a cyclone separator. Korean J. Chem. Eng. 37, 743–754 (2020). https://doi.org/10.1007/s11814-020-0498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0498-1

Keywords

Navigation