Skip to main content

Advertisement

Log in

Influence of post-processing on additively manufactured lattice structures

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The rapid evolution in additive manufacturing (AM) technology advocates a periodic assessment of the recent progress in the process and product developments. One such area is lattice structure (LS) fabrication with controlled porosity, especially microscale triply periodic minimal surfaces. These nature-inspired and mechanically robust complex cellular structures are making significant progress in aerospace, automotive, and biomedical applications. However, limitations in the AM process, such as process-induced defects, microstructural heterogeneities, and post-processing challenges, may result in an inaccurate assessment of mechanical properties. This review paper presents a comprehensive overview of challenges in the fabrication of AM cellular structures, LS classification, simulation outline, and the effect of post-processing on their overall mechanical and microstructural development. It further provides a physical assessment and the underlying science of failure criteria and deformation mechanism of AM lattice structures. This review includes substantive discussions on LS topology, relative density, AM defects, and material type, critically analyzing the printability of various engineering alloys based on experimental and numerical studies. Finally, the knowledge gaps in the scientific understanding and the future research needs for the expansion of AM lattice materials are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

LPBF:

Laser powder bed fusion

DED:

Direct energy deposition

PBF:

Powder bed fusion

TPMS:

Triply periodic minimal surfaces.

FGs:

Functionally graded lattice Structures

HIP:

Hot isostatic pressing.

EBAM:

Electron beam additive manufacturing.

PLB:

Pulse laser-based.

CLB:

Continuous laser-based.

CAD:

Computer aided design

GCs:

Gyroid cellular

References

  1. Abou-Ali AM, Al-Ketan O, Lee D-W, Rowshan R, Abu Al-Rub RK (2020) Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Mater Design 196:109100

    Article  Google Scholar 

  2. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Mater Des 104:174–182

    Article  Google Scholar 

  3. Afshar M, Anaraki AP, Montazerian H (2018) Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces. Mater Sci Eng, C 92:254–267

    Article  Google Scholar 

  4. Ahmadi SM, Hedayati R, Li Y, Lietaert K, Tumer N, Fatemi A, Rans CD, Pouran B, Weinans H, Zadpoor AA (2018) Fatigue performance of additively manufactured meta-biomaterials: the effects of topology and material type. Acta Biomater 65:292–304

    Article  Google Scholar 

  5. Ahmadi SM, Kumar R, Borisov EV, Petrov R, Leeflang S, Li Y, Tumer N, Huizenga R, Ayas C, Zadpoor AA, Popovich VA (2019) From microstructural design to surface engineering: a tailored approach for improving fatigue life of additively manufactured meta-biomaterials. Acta Biomater 83:153–166

    Article  Google Scholar 

  6. Al-Ketan O, Abu Al-Rub RK, Rowshan R (2018) The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. J Mater Res 33(3):343–359

    Article  Google Scholar 

  7. Al-Ketan O, Lee DW, Rowshan R, Abu Al-Rub RK (2020) Functionally graded and multi-morphology sheet TPMS lattices: design, manufacturing, and mechanical properties. J Mech Behav Biomed Mater 102:103520

    Article  Google Scholar 

  8. Al-Ketan O, Rowshan R, Abu Al-Rub RK (2018) Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf 19:167–183

    Google Scholar 

  9. Alabort E, Barba D, Reed RC (2019) Design of metallic bone by additive manufacturing. Scripta Mater 164:110–114

    Article  Google Scholar 

  10. Alhammadi A, Al-Ketan O, Khan KA, Ali M, Rowshan R, Abu Al-Rub RK (2020) Microstructural characterization and thermomechanical behavior of additively manufactured AlSi10Mg sheet cellular materials. Mater Sci Eng A 791

  11. Alomarah A, Ruan D, Masood S, Sbarski I, Faisal B (2018) An investigation of in-plane tensile properties of re-entrant chiral auxetic structure. Int J Adv Manuf Technol 96(5–8):2013–2029

    Article  Google Scholar 

  12. Amani Y, Dancette S, Delroisse P, Simar A, Maire E (2018) Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element approaches. Acta Mater 159:395–407

    Article  Google Scholar 

  13. Amin Yavari S, Ahmadi SM, van der Stok J, Wauthle R, Riemslag AC, Janssen M, Schrooten J, Weinans H, Zadpoor AA (2014) Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. J Mech Behav Biomed Mater 36:109–119

    Article  Google Scholar 

  14. Amin Yavari S, Ahmadi SM, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor AA (2015) Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater 43:91–100

    Article  Google Scholar 

  15. Amin Yavari S, Wauthle R, van der Stok J, Riemslag AC, Janssen M, Mulier M, Kruth JP, Schrooten J, Weinans H, Zadpoor AA (2013) Fatigue behavior of porous biomaterials manufactured using selective laser melting. Mater Sci Eng C 33(8):4849–4858

    Article  Google Scholar 

  16. Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, Pasini D (2016) High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater 30:345–356

    Article  Google Scholar 

  17. Ashby MF (2006) The properties of foams and lattices. Philos Trans A Math Phys Eng Sci 364(1838):15–30

    MathSciNet  Google Scholar 

  18. Ataee A, Li Y, Brandt M, Wen C (2018) Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater 158:354–368

    Article  Google Scholar 

  19. Ataee A, Li Y, Wen C (2019) A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomater 97:587–596

    Article  Google Scholar 

  20. Averyanova M, Bertrand P, Verquin B (2011) Manufacture of Co-Cr dental crowns and bridges by selective laser Melting technology. Virtual Phys Prototyping 6(3):179–185

    Article  Google Scholar 

  21. Aydinöz M, Brenne F, Schaper M, Schaak C, Tillmann W, Nellesen J, Niendorf T (2016) On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater Sci Eng A 669:246–258

    Article  Google Scholar 

  22. Bagehorn S, Wehr J, Maier HJ (2017) Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti–6Al–4V parts. Int J Fatigue 102:135–142

    Article  Google Scholar 

  23. Bagheri ZS, Melancon D, Liu L, Johnston RB, Pasini D (2017) Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting. J Mech Behav Biomed Mater 70:17–27

    Article  Google Scholar 

  24. Bagherifard S, Beretta N, Monti S, Riccio M, Bandini M, Guagliano M (2018) On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing. Mater Des 145:28–41

    Article  Google Scholar 

  25. Baicheng Z, Xiaohua L, Jiaming B, Junfeng G, Pan W, Chen-nan S, Muiling N, Guojun Q, Jun W (2017) Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater Des 116:531–537

    Article  Google Scholar 

  26. Baranowski P, Płatek P, Antolak-Dudka A, Sarzyński M, Kucewicz M, Durejko T, Małachowski J, Janiszewski J, Czujko T (2019) Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: Experimental testing and simulation. Addit Manuf 25:307–316

    Google Scholar 

  27. Barba D, Alabort E, Reed R (2019) Synthetic bone: design by additive manufacturing. Acta Biomater 97:637–656

    Article  Google Scholar 

  28. Benedetti M, Torresani E, Leoni M, Fontanari V, Bandini M, Pederzolli C, Potrich C (2017) The effect of post-sintering treatments on the fatigue and biological behavior of Ti–6Al–4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater 71:295–306

    Article  Google Scholar 

  29. Bertoldi K, Boyce MC, Deschanel S, Prange S, Mullin T (2008) Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. J Mech Phys Solids 56(8):2642–2668

    Article  MATH  Google Scholar 

  30. Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L (2005) Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 26(19):4085–4089

    Article  Google Scholar 

  31. Black J, Hastings G (2013) Handbook of biomaterial properties. Springer, New York

    Google Scholar 

  32. Boban J, Ahmed A (2021) Improving the surface integrity and mechanical properties of additive manufactured stainless steel components by wire electrical discharge polishing. J Mater Process Technol 291:117013

    Article  Google Scholar 

  33. Bobbert FSL, Lietaert K, Eftekhari AA (2017) Additively manufactured metallic porous biomaterials based on minimalsurfaces: a unique combination of topological, mechanical, and masstransport propertie. Acta Biomater 53:572–584

    Article  Google Scholar 

  34. Bobe K, Willbold E, Morgenthal I, Andersen O, Studnitzky T, Nellesen J, Tillmann W, Vogt C, Vano K, Witte F (2013) In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater 9(10):8611–8623

    Article  Google Scholar 

  35. Boniotti L, Beretta S, Patriarca L, Rigoni L, Foletti S (2019) Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM. Int J Fatigue 128:105181

    Article  Google Scholar 

  36. Campoli G, Borleffs MS, Amin Yavari S, Wauthle R, Weinans H, Zadpoor AA (2013) Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des 49:957–965

    Article  Google Scholar 

  37. Carlota V (2020) A review of the most innovative 3D printing applications in automotive 2021 (25 February 2021)

  38. Chaffaı́ S, Peyrin F, Nuzzo S, Porcher R, Berger G, Laugier P (2002) Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone 30(1):229–237

    Article  Google Scholar 

  39. Chan KS (2015) Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques. Surf Topogr Metrol Prop 3(4):044006

    Article  Google Scholar 

  40. Charbonnier B, Manassero M, Bourguignon M, Decambron A, El-Hafci H, Morin C, Leon D, Bensidoum M, Corsia S, Petite H (2020) Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites. Acta Biomater 109:254–266

    Article  Google Scholar 

  41. Chastand V, Quaegebeur P, Maia W, Charkaluk E (2018) Comparative study of fatigue properties of Ti-6Al-4V specimens built by electron beam melting (EBM) and selective laser melting (SLM). Mater Charact 143:76–81

    Article  Google Scholar 

  42. Chen JK, Wu MW, Cheng TL, Chiang PH (2019) Continuous compression behaviors of selective laser melting Ti-6Al-4V alloy with cuboctahedron cellular structures. Mater Sci Eng C Mater Biol Appl 100:781–788

    Article  Google Scholar 

  43. Choy SY, Sun C-N, Leong KF, Wei J (2017) Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density. Addit Manuf 16:213–224

    Google Scholar 

  44. Coenen V, Alderson K (2011) Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Physica Status Solidi (b) 248(1):66–72

    Article  Google Scholar 

  45. Concli F, Gilioli A (2019) Numerical and experimental assessment of the mechanical properties of 3D printed 18-Ni300 steel trabecular structures produced by Selective Laser Melting—A lean design approach. Virtual and Physical Prototyping 14(3):267–276

    Article  Google Scholar 

  46. Cutolo A, Engelen B, Desmet W, Van Hooreweder B (2020) Mechanical properties of diamond lattice Ti–6Al–4V structures produced by laser powder bed fusion: on the effect of the load direction. J Mech Behav Biomed Mater 104:103656

    Article  Google Scholar 

  47. Daynes S, Lifton J, Lu WF, Wei J, Feih S (2021) Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices. Eur J Mech A Solids 86:104170

    Article  MATH  Google Scholar 

  48. DebRoy T, Wei H, Zuback J, Mukherjee T, Elmer J, Milewski J, Beese AM, Wilson-HeidDe Ad, Zhang W A (2018) Additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci 92:112–224

    Article  Google Scholar 

  49. Denti L, Sola A (2019) On the effectiveness of different surface finishing techniques on A357. 0 parts produced by laser-based powder bed fusion: surface roughness and fatigue strength. Metals 9(12):1284

    Article  Google Scholar 

  50. Deshpande VS, Ashby MF, Fleck NA (2001) Foam topology: bending versus stretching dominated architectures. Acta Mater 49(6):1035–1040

    Article  Google Scholar 

  51. Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49(8):1747–1769

    Article  MATH  Google Scholar 

  52. Dong G, Marleau-Finley J, Zhao YF (2019) Investigation of electrochemical post-processing procedure for Ti–6Al–4V lattice structure manufactured by direct metal laser sintering (DMLS). Int J Adv Manuf Technol 104(9):3401–3417

    Article  Google Scholar 

  53. Drücker S, Schulze M, Ipsen H, Bandegani L, Hoch H, Kluge M, Fiedler B (2021) Experimental and numerical mechanical characterization of additively manufactured Ti6Al4V lattice structures considering progressive damage. Int J Mech Sci 189:105986

    Article  Google Scholar 

  54. Eliaz N (2019) Corrosion of metallic biomaterials: a review. Materials 12(3):407

    Article  Google Scholar 

  55. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369(9576):1869–1875

    Article  Google Scholar 

  56. Fahlbusch N-C, Grenestedt JL, Becker W (2016) Effective failure behavior of an analytical and a numerical model for closed-cell foams. Int J Solids Struct 97–98:417–430

    Article  Google Scholar 

  57. Farhang B, Ravichander BB, Venturi F, Amerinatanzi A, Shayesteh Moghaddam N (2020) Study on variations of microstructure and metallurgical properties in various heat-affected zones of SLM fabricated Nickel-Titanium alloy. Mater Sci Eng A 774:138919

    Article  Google Scholar 

  58. Feng K-Y, Liu P, Li H-X, Sun S-Y, Xu S-B, Li J-N (2017) Microstructure and phase transformation on the surface of Inconel 718 alloys fabricated by SLM under 1050 °C solid solution + double ageing. Vacuum 145:112–115

    Article  Google Scholar 

  59. Galati M, Rizza G, Defanti S, Denti L (2021) Surface roughness prediction model for Electron Beam Melting (EBM) processing Ti6Al4V. Precis Eng 69:19–28

    Article  Google Scholar 

  60. Galati M, Saboori A, Biamino S, Calignano F, Lombardi M, Marchiandi G, Minetola P, Fino P, Iuliano L (2020) Ti–6Al–4V lattice structures produced by EBM: heat treatment and mechanical properties. Procedia CIRP 88:411–416

    Article  Google Scholar 

  61. Gavazzoni M, Boniotti L, Foletti S (2019) Influence of specimen size on the mechanical properties of microlattices obtained by selective laser melting. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406219869741

  62. Gibson LJ (1989) Modelling the mechanical behavior of cellular materials. Mater Sci Eng, A 110:1–36

    Article  Google Scholar 

  63. Gibson LJ (2003) Cellular solids. MRS Bull 28(4):270–274

    Article  Google Scholar 

  64. Gong X, Anderson T, Chou K (2012) Review on powder-based electron beam additive manufacturing technology. Presented at International Symposium on Flexible Automation

  65. Gorgin Karaji Z, Hedayati R, Pouran B, Apachitei I, Zadpoor AA (2017) Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials. Mater Sci Eng C 76:406–416

    Article  Google Scholar 

  66. Gorgin Karaji Z, Speirs M, Dadbakhsh S, Kruth JP, Weinans H, Zadpoor AA, Amin Yavari S (2017) Additively manufactured and surface biofunctionalized porous nitinol. ACS Appl Mater Interfaces 9(2):1293–1304

    Article  Google Scholar 

  67. Gorny B, Niendorf T, Lackmann J, Thoene M, Troester T, Maier HJ (2011) In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting. Mater Sci Eng, A 528(27):7962–7967

    Article  Google Scholar 

  68. Grima JN, Gatt R, Farrugia PS (2008) On the properties of auxetic meta-tetrachiral structures. Physica Status Solidi (b) 245(3):511–520

    Article  Google Scholar 

  69. Gümrük R, Mines RAW (2013) Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci 68:125–139

    Article  Google Scholar 

  70. Gümrük R, Mines RAW, Karadeniz S (2013) Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions. Mater Sci Eng, A 586:392–406

    Article  Google Scholar 

  71. Hamidi Nasab M, Giussani A, Gastaldi D, Tirelli V, Vedani M (2019) Effect of surface and subsurface defects on fatigue behavior of alsi10mg alloy processed by Laser Powder Bed Fusion (L-PBF). Metals 9(10):1063

    Article  Google Scholar 

  72. Han L, Che S (2018) An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater 30(17):1705708

    Article  Google Scholar 

  73. Harun WSW, Kamariah MSIN, Muhamad N, Ghani SAC, Ahmad F, Mohamed Z (2018) A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol 327:128–151

    Article  Google Scholar 

  74. Hedayati R, Ahmadi SM, Lietaert K, Pouran B, Li Y, Weinans H, Rans CD, Zadpoor AA (2018) Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials. J Mech Behav Biomed Mater 79:254–263

    Article  Google Scholar 

  75. Hedayati R, Hosseini-Toudeshky H, Sadighi M, Mohammadi-Aghdam M, Zadpoor AA (2016) Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials. Int J Fatigue 84:67–79

    Article  Google Scholar 

  76. Hedayati R, Sadighi M, Mohammadi-Aghdam M, Zadpoor AA (2016) Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell. J Mech Behav Biomed Mater 53:272–294

    Article  MATH  Google Scholar 

  77. Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544

    Article  Google Scholar 

  78. Helou M, Vongbunyong S, Kara S (2016) Finite element analysis and validation of cellular structures. Procedia CIRP 50:94–99

    Article  Google Scholar 

  79. Heringa MB, Peters RJB, Bleys RLAW, van der Lee MK, Tromp PC, van Kesteren PCE, van Eijkeren JCH, Undas AK, Oomen AG, Bouwmeester H (2018) Detection of titanium particles in human liver and spleen and possible health implications. Part Fibre Toxicol 15(1):15

    Article  Google Scholar 

  80. Hooreweder BV, Lietaert K, Neirinck B, Lippiatt N, Wevers M (2017) CoCr F75 scaffolds produced by additive manufacturing: Influence of chemical etching on powder removal and mechanical performance. J Mech Behav Biomed Mater 70:60–67

    Article  Google Scholar 

  81. Hrabe N, Gnäupel-Herold T, Quinn T (2017) Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. Int J Fatigue 94:202–210

    Article  Google Scholar 

  82. Hsieh M-T, Valdevit L (2020) Minisurf—A minimal surface generator for finite element modeling and additive manufacturing. Software Impacts 6:100026

    Article  Google Scholar 

  83. Huang Z, Shi X, Wang G, Leukkunen P, Huttula M, Cao W (2020) Antireflective design of Si-based photovoltaics via biomimicking structures on black butterfly scales. Sol Energy 204:738–747

    Article  Google Scholar 

  84. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  85. Jardini AL, Larosa MA, FilhoZavaglia CAdC, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P RM (2014) Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio-Maxillof Surg 42(8):1877–1884

    Article  Google Scholar 

  86. Jin N, Wang F, Wang Y, Zhang B, Cheng H, Zhang H (2019) Failure and energy absorption characteristics of four lattice structures under dynamic loading. Mater Des 169:107655

    Article  Google Scholar 

  87. Jin N, Yan Z, Wang Y, Cheng H, Zhang H (2021) Effects of heat treatment on microstructure and mechanical properties of selective laser melted Ti-6Al-4V lattice materials. Int J Mech Sci 190:106042

    Article  Google Scholar 

  88. Jonášová L, Müller FA, Helebrant A, Strnad J, Greil P (2002) Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials 23(15):3095–3101

    Article  Google Scholar 

  89. Kadkhodapour J, Montazerian H, Darabi A, Anaraki AP, Ahmadi SM, Zadpoor AA, Schmauder S (2015) Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J Mech Behav Biomed Mater 50:180–191

    Article  Google Scholar 

  90. Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE (2011) Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29):6875–6882

    Article  Google Scholar 

  91. Karami K, Blok A, Weber L, Ahmadi SM, Petrov R, Nikolic K, Borisov EV, Leeflang S, Ayas C, Zadpoor AA, Mehdipour M, Reinton E, Popovich VA (2020) Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: effect of post-processing on microstructural anisotropy and fatigue behaviour. Additive Manuf 36:101433

    Article  Google Scholar 

  92. Karamooz Ravari MR, Kadkhodaei M, Badrossamay M, Rezaei R (2014) Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int J Mech Sci 88:154–161

    Article  Google Scholar 

  93. Karnessis N, Burriesci G (2013) Uniaxial and buckling mechanical response of auxetic cellular tubes. Smart Mater Struct 22(8):084008

    Article  Google Scholar 

  94. Kasperovich G, Hausmann J (2015) Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Technol 220:202–214

    Article  Google Scholar 

  95. Khan HM, Karabulut Y, Kitay O, Kaynak Y, Jawahir I (2020) Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review. Mach Sci Technol 25(1):118–176

    Article  Google Scholar 

  96. Khan HM, Özer G, Yilmaz MS, Koc E (2022) Corrosion of additively manufactured metallic components: a review. Arab J Sci Eng 47:5465

    Article  Google Scholar 

  97. Khan HM, Sirin TB, Tarakci G, Bulduk ME, Coskun M, Koc E, Kaynak Y (2021) Improving the surface quality and mechanical properties of selective laser sintered PA2200 components by the vibratory surface finishing process. SN Appl Sci 3(3):1–14

    Article  Google Scholar 

  98. Khan HM, Waqar S, Koç E (2022b) Evolution of temperature and residual stress behavior in selective laser melting of 316L stainless steel across a cooling channel. Rapid Prototyping J (ahead-of-print)

  99. Kim HR, Jang S-H, Kim YK, Son JS, Min BK, Kim K-H, Kwon T-Y (2016) Microstructures and mechanical properties of Co–Cr dental alloys fabricated by three CAD/CAM-based processing techniques. Materials 9(7):596

    Article  Google Scholar 

  100. Kladovasilakis N, Tsongas K, Tzetzis D (2020) Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures. Biomimetics (Basel) 5(3)

  101. Kokubo T (1996) Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta 280–281:479–490

    Article  Google Scholar 

  102. Kumar A (2021) Researchers 3D print support-free lattices inspired by Sea Urchins 2021 (25 Feb 2021)

  103. Kumar A, Nune KC, Murr LE, Misra RDK (2016) Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm. Int Mater Rev 61(1):20–45

    Article  Google Scholar 

  104. Kumar A, Verma S, Jeng J-Y (2020) Supportless lattice structures for energy absorption fabricated by fused deposition modeling. 3D Print Addit Manuf 7(2):85–96

    Article  Google Scholar 

  105. Lakes RS (1993) Design considerations for materials with negative poisson’s ratios. J Mech Des 115(4):696–700

    Article  Google Scholar 

  106. Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357

    Article  Google Scholar 

  107. Leary M, Mazur M, Williams H, Yang E, Alghamdi A, Lozanovski B, Zhang X, Shidid D, Farahbod-Sternahl L, Witt G, Kelbassa I, Choong P, Qian M, Brandt M (2018) Inconel 625 lattice structures manufactured by selective laser melting (SLM): mechanical properties, deformation and failure modes. Mater Des 157:179–199

    Article  Google Scholar 

  108. Lei H, Li C, Meng J, Zhou H, Liu Y, Zhang X, Wang P, Fang D (2019) Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis. Mater Des 169:107685

    Article  Google Scholar 

  109. Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Natl Sci: Mater Int 24(5):414–422

    Article  Google Scholar 

  110. Li P (2015) Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures. Mater Sci Eng A 622:114–120

    Article  Google Scholar 

  111. Li P, Ma YE, Sun W, Qian X, Zhang W, Wang Z (2021) Fracture and failure behavior of additive manufactured Ti6Al4V lattice structures under compressive load. Eng Fract Mech 244:107537

    Article  Google Scholar 

  112. Li P, Warner DH, Fatemi A, Phan N (2016) Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. Int J Fatigue 85:130–143

    Article  Google Scholar 

  113. Li S, Liu Z, Shim VPW, Guo Y, Sun Z, Li X, Wang Z (2020) In-plane compression of 3D-printed self-similar hierarchical honeycombs—Static and dynamic analysis. Thin-Walled Struct 157

  114. Lim J, You C, Dayyani I (2020) Multi-objective topology optimization and structural analysis of periodic spaceframe structures. Mater Des 190:108552

    Article  Google Scholar 

  115. Ling C, Cernicchi A, Gilchrist MD, Cardiff P (2019) Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Mater Des 162:106–118

    Article  Google Scholar 

  116. Liu L, Kamm P, García-Moreno F, Banhart J, Pasini D (2017) Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J Mech Phys Solids 107:160–184

    Article  MathSciNet  Google Scholar 

  117. Löber L, Flache C, Petters R, Kühn U, Eckert J (2013) Comparison of different post processing technologies for SLM generated 316l steel parts. Rapid Prototyping J 19(3):173–179

    Article  Google Scholar 

  118. Lozanovski B, Downing D, Tran P, Shidid D, Qian M, Choong P, Brandt M, Leary M (2020) A Monte Carlo simulation-based approach to realistic modelling of additively manufactured lattice structures. Addit Manuf 32:101092

    Google Scholar 

  119. Lozanovski B, Leary M, Tran P, Shidid D, Qian M, Choong P, Brandt M (2019) Computational modelling of strut defects in SLM manufactured lattice structures. Mater Des 171:107671

    Article  Google Scholar 

  120. Lu Z-X, Li X, Yang Z-Y, Xie F (2016) Novel structure with negative Poisson’s ratio and enhanced Young’s modulus. Compos Struct 138:243–252

    Article  Google Scholar 

  121. Lu Z, Wang Q, Li X, Yang Z (2017) Elastic properties of two novel auxetic 3D cellular structures. Int J Solids Struct 124:46–56

    Article  Google Scholar 

  122. Lyczkowska-Widlak E, Lochynski P, Nawrat G, Chlebus E (2019) Comparison of electropolished 316L steel samples manufactured by SLM and traditional technology. Rapid Prototyping J 25(3):566–580

    Article  Google Scholar 

  123. Lynch ME, Williams K, Cabrera M, Beccuti T (2021) Surface finishing of additively manufactured IN718 lattices by electrochemical machining. Int J Adv Manuf Technol

  124. Maconachie T, Leary M, Lozanovski B, Zhang X, Qian M, Faruque O, Brandt M (2019) SLM lattice structures: properties, performance, applications and challenges. Mater Design 183

  125. Magalhaes R, Subramani P, Lisner T, Rana S, Ghiassi B, Fangueiro R, Oliveira DV, Lourenco PB (2016) Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Compos A Appl Sci Manuf 87:86–97

    Article  Google Scholar 

  126. Majeed M, Khan H, Rasheed I (2019) Finite element analysis of melt pool thermal characteristics with passing laser in SLM process. Optik 194:163068

    Article  Google Scholar 

  127. Maleki E, Bagherifard S, Bandini M, Guagliano M (2020) Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Addit Manuf 37:101619

    Google Scholar 

  128. Maskery I, Aboulkhair NT, Aremu AO, Tuck CJ, Ashcroft IA (2017) Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit Manuf 16:24–29

    Google Scholar 

  129. Maskery I, Aboulkhair NT, Aremu AO, Tuck CJ, Ashcroft IA, Wildman RD, Hague RJM (2016) A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater Sci Eng A 670:264–274

    Article  Google Scholar 

  130. Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84(5–8):1391–1411

    Google Scholar 

  131. Melancon D, Bagheri ZS, Johnston RB, Liu L, Tanzer M, Pasini D (2017) Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants. Acta Biomater 63:350–368

    Article  Google Scholar 

  132. Melchels FPW, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916

    Article  Google Scholar 

  133. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 12(5):254–265

    Article  Google Scholar 

  134. Mousanezhad D, Haghpanah B, Ghosh R, Hamouda AM, Nayeb-Hashemi H, Vaziri A (2016) Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach. Theor Appl Mech Lett 6(2):81–96

    Article  Google Scholar 

  135. Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB (2009) Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32

    Article  Google Scholar 

  136. Naboni R, Mirante L (2015) Metamaterial computation and fabrication of auxetic patterns for architecture

  137. Nagesha BK, Dhinakaran V, Varsha Shree M, Manoj Kumar KP, Chalawadi D, Sathish T (2020) Review on characterization and impacts of the lattice structure in additive manufacturing. Mater Today: Proc 21:916–919

    Google Scholar 

  138. Nazir A, Abate KM, Kumar A, Jeng J-Y (2019) A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int J Adv Manuf Technol 104(9):3489–3510

    Article  Google Scholar 

  139. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196

    Article  Google Scholar 

  140. Nguyen CHP, Kim Y, Do QT, Choi Y (2021) Implicit-based computer-aided design for additively manufactured functionally graded cellular structures. J Comput Design Eng 8(3):813–823

    Article  Google Scholar 

  141. Ni X-Q, Kong D-C, Wen Y, Zhang L, Wu W-H, He B-B, Lu L, Zhu D-X (2019) Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting. Int J Miner Metall Mater 26(3):319–328

    Article  Google Scholar 

  142. Obadimu SO, Kourousis KI (2021) Compressive behaviour of additively manufactured lattice structures: a review. Aerospace 8(8):207

    Article  Google Scholar 

  143. Pan C, Han Y, Lu J (2020) Design and optimization of lattice structures: a review. Appl Sci 10(18):6374

    Article  Google Scholar 

  144. Patterson AE, Messimer SL, Farrington PA (2017) Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5(2):15

    Article  Google Scholar 

  145. Persenot T, Burr A, Plancher E, Buffière J-Y, Dendievel R, Martin G (2019) Effect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting: consequences on fatigue resistance. Addit Manuf 28:821–830

    Google Scholar 

  146. Pinto J, Solórzano E, Rodriguez-Perez MA, de Saja JA (2013) Characterization of the cellular structure based on user-interactive image analysis procedures. J Cell Plast 49(6):555–575

    Article  Google Scholar 

  147. Plocher J, Panesar A (2020) Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures. Addit Manuf 33:101171

    Google Scholar 

  148. Pyka G, Kerckhofs G, Papantoniou I, Speirs M, Schrooten J, Wevers M (2013) Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials (Basel) 6(10):4737–4757

    Article  Google Scholar 

  149. Qi D, Yu H, Liu M, Huang H, Xu S, Xia Y, Qian G, Wu W (2019) Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams. Int J Mech Sci 163:105091

    Article  Google Scholar 

  150. Qiao J, Chen CQ (2015) Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs. J Appl Mech 82(5):051007

    Article  Google Scholar 

  151. Qiu C, Yue S, Adkins NJE, Ward M, Hassanin H, Lee PD, Withers PJ, Attallah MM (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater Sci Eng A 628:188–197

    Article  Google Scholar 

  152. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26

    Article  Google Scholar 

  153. Rao JH, Zhang Y, Huang A, Wu X, Zhang K (2019) Improving fatigue performances of selective laser melted Al–7Si–0.6Mg alloy via defects control. Int J Fatigue 129

  154. Ravari MK, Kadkhodaei M (2015) A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures. J Mater Eng Perform 24(1):245–252

    Article  Google Scholar 

  155. Ravari MRK, Esfahani SN, Andani MT, Kadkhodaei M, Ghaei A, Karaca H, Elahinia M (2016) On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures. Smart Mater Struct 25(2):025008

    Article  Google Scholar 

  156. Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  Google Scholar 

  157. Rodrigues H (2006) Topology optimization of structures: applications in the simulation and design of cellular materials. In: Computational methods in engineering & science. Springer, New York, pp 101–112

  158. Rosenthal I, Shneck R, Stern A (2018) Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process. Mater Sci Eng, A 729:310–322

    Article  Google Scholar 

  159. Sallica-Leva E, Caram R, Jardini AL, Fogagnolo JB (2016) Ductility improvement due to martensite alpha’ decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. J Mech Behav Biomed Mater 54:149–158

    Article  Google Scholar 

  160. Saxena KK, Das R, Calius EP (2016) Three decades of auxetics research-materials with negative Poisson’s ratio: a review. Adv Eng Mater 18(11):1847–1870

    Article  Google Scholar 

  161. Scalzo F, Totis G, Vaglio E, Sortino M (2021) Experimental study on the high-damping properties of metallic lattice structures obtained from SLM. Precision Eng

  162. Scherillo F (2019) Chemical surface finishing of AlSi10Mg components made by additive manufacturing. Manuf Lett 19:5–9

    Article  Google Scholar 

  163. Schneider-Maunoury C, Weiss L, Acquier P, Boisselier D, Laheurte P (2017) Functionally graded Ti6Al4V-Mo alloy manufactured with DED-CLAD® process. Addit Manuf 17:55–66

    Google Scholar 

  164. Shishkovsky I, Morozov Y, Smurov I (2007) Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering. Appl Surf Sci 254(4):1145–1149

    Article  Google Scholar 

  165. Sienkiewicz J, Płatek P, Jiang F, Sun X, Rusinek A (2020) Investigations on the mechanical response of gradient lattice structures manufactured via SLM. Metals 10(2):213

    Article  Google Scholar 

  166. Sigmund O (2000) Topology optimization: a tool for the tailoring of structures and materials. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 358(1765):211–227

    Article  MathSciNet  MATH  Google Scholar 

  167. Simpson J, Kazancı Z (2020) Crushing investigation of crash boxes filled with honeycomb and re-entrant (auxetic) lattices. Thin-Walled Struct 150:106676

    Article  Google Scholar 

  168. Sing S, Yeong W, Wiria F, Tay B (2016) Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method. Exp Mech 56(5):735–748

    Article  Google Scholar 

  169. Smith M, Guan Z, Cantwell WJ (2013) Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41

    Article  Google Scholar 

  170. Soro N, Attar H, Wu X, Dargusch MS (2019) Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell. Mater Sci Eng A 745:195–202

    Article  Google Scholar 

  171. Soro N, Saintier N, Attar H, Dargusch MS (2020) Surface and morphological modification of selectively laser melted titanium lattices using a chemical post treatment. Surface Coat Technol 393:125794

    Article  Google Scholar 

  172. Speirs M, Van Hooreweder B, Van Humbeeck J, Kruth JP (2017) Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater 70:53–59

    Article  Google Scholar 

  173. Strano G, Hao L, Everson R, Evans K (2013) A new approach to the design and optimisation of support structures in additive manufacturing. Int J Adv Manuf Technol 66(9):1247–1254

    Article  Google Scholar 

  174. Straumit I, Lomov SV, Wevers M (2015) Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Compos A Appl Sci Manuf 69:150–158

    Article  Google Scholar 

  175. Subramani P, Rana S, Ghiassi B, Fangueiro R, Oliveira DV, Lourenco PB, Xavier J (2016) Development and characterization of novel auxetic structures based on re-entrant hexagon design produced from braided composites. Compos B Eng 93:132–142

    Article  Google Scholar 

  176. Tan KL, Yeo S-H, Ong CH (2016) Nontraditional finishing processes for internal surfaces and passages: a review. Proc Inst Mech Eng B: J Eng Manuf 231(13):2302–2316

    Article  Google Scholar 

  177. Tanlak N, De Lange DF, Van Paepegem W (2017) Numerical prediction of the printable density range of lattice structures for additive manufacturing. Mater Des 133:549–558

    Article  Google Scholar 

  178. Tascioglu E, Karabulut Y, Kaynak Y (2020) Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. Int J Adv Manuf Technol 107(5):1947–1956

    Article  Google Scholar 

  179. Tascioglu E, Khan HM, Kaynak Y, Coşkun M, Tarakci G, Koç E (2021) Effect of aging and finish machining on the surface integrity of selective laser melted maraging steel. Rapid Prototyping J 27(10):1900–1909

    Article  Google Scholar 

  180. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58(9):3303–3312

    Article  Google Scholar 

  181. Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Hoyer KP (2017) Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit Manuf 13:93–102

    Google Scholar 

  182. Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth JP (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431

    Article  Google Scholar 

  183. Van Hooreweder B, Apers Y, Lietaert K, Kruth JP (2017) Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomater 47:193–202

    Article  Google Scholar 

  184. Van Hooreweder B, Kruth J-P (2017) Advanced fatigue analysis of metal lattice structures produced by Selective Laser Melting. CIRP Ann 66(1):221–224

    Article  Google Scholar 

  185. Van Humbeeck J (2018) Additive manufacturing of shape memory alloys. Shape Memory Superelasticity 4(2):309–312

    Article  Google Scholar 

  186. Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 13(4):196–203

    Article  Google Scholar 

  187. Vigliotti A, Deshpande VS, Pasini D (2014) Non linear constitutive models for lattice materials. J Mech Phys Solids 64:44–60

    Article  MathSciNet  Google Scholar 

  188. Vilaro T, Colin C, Bartout JD (2011) As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mater Trans A 42(10):3190–3199

    Article  Google Scholar 

  189. Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by Selective Laser Melting: microstructure and mechanical properties. J Alloy Compd 541:177–185

    Article  Google Scholar 

  190. Wang P, Lei H, Zhu X, Chen H, Fang D (2019) Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J Alloy Compd 789:852–859

    Article  Google Scholar 

  191. Wang S, Wang J, Xu Y, Zhang W, Zhu J (2020) Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing. Front Mech Eng 15(2):319–327

    Article  Google Scholar 

  192. Wang Y, Duan J, Zhao Y, Yang X, Tang Q (2018) Ternary hybrid PtM@polyaniline (M = Ni, FeNi) counter electrodes for dye-sensitized solar cells. Electrochim Acta 291:114–123

    Article  Google Scholar 

  193. Wang Z, Li P (2018) Characterisation and constitutive model of tensile properties of selective laser melted Ti-6Al-4V struts for microlattice structures. Mater Sci Eng A 725:350–358

    Article  Google Scholar 

  194. Wehmöller M, Warnke PH, Zilian C, Eufinger H (2005) Implant design and production—a new approach by selective laser melting. Int Congr Ser 1281:690–695

    Article  Google Scholar 

  195. Wei K, Wang Z, Zeng X (2017) Preliminary investigation on selective laser melting of Ti-5Al-2.5Sn α-Ti alloy: from single tracks to bulk 3D components. J Mater Process Technol 244:73–85

    Article  Google Scholar 

  196. Wong M, Tsopanos S, Sutcliffe Chris J, Owen I (2007) Selective laser melting of heat transfer devices. Rapid Prototyping J 13(5):291–297

    Article  Google Scholar 

  197. Wu M-W, Chen J-K, Lin B-H, Chiang P-H (2017) Improved fatigue endurance ratio of additive manufactured Ti–6Al–4V lattice by hot isostatic pressing. Mater Des 134:163–170

    Article  Google Scholar 

  198. Wysocki B, Idaszek J, Zdunek J, Rożniatowski K, Pisarek M, Yamamoto A, Święszkowski W (2018) The influence of selective laser melting (SLM) process parameters on in-vitro cell response. Int J Mol Sci 19(6):1619

    Article  Google Scholar 

  199. Xiao Z, Yang Y, Xiao R, Bai Y, Song C, Wang D (2018) Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Mater Des 143:27–37

    Article  Google Scholar 

  200. Xiong Z, Liu S, Li S, Shi Y, Yang Y, Misra R (2019) Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng A 740:148–156

    Article  Google Scholar 

  201. Yadollahi A, Shamsaei N (2017) Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int J Fatigue 98:14–31

    Article  Google Scholar 

  202. Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214(4):856–864

    Article  Google Scholar 

  203. Yan C, Hao L, Hussein A, Raymont D (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38

    Article  Google Scholar 

  204. Yan C, Hao L, Hussein A, Wei Q, Shi Y (2017) Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting. Mater Sci Eng, C 75:1515–1524

    Article  Google Scholar 

  205. Yan C, Hao L, Hussein A, Young P (2015) Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater 51:61–73

    Article  Google Scholar 

  206. Yang KV, Rometsch P, Jarvis T, Rao J, Cao S, Davies C, Wu X (2018) Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Mater Sci Eng A 712:166–174

    Article  Google Scholar 

  207. Yang L, Mertens R, Ferrucci M, Yan C, Shi Y, Yang S (2019) Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties. Mater Des 162:394–404

    Article  Google Scholar 

  208. Yang L, Yan C, Cao W, Liu Z, Song B, Wen S, Zhang C, Shi Y, Yang S (2019) Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater 181:49–66

    Article  Google Scholar 

  209. Yoo DJ (2011) Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32(31):7741–7754

    Article  Google Scholar 

  210. Yu H, Li F, Wang Z, Zeng X (2019) Fatigue performances of selective laser melted Ti-6Al-4V alloy: Influence of surface finishing, hot isostatic pressing and heat treatments. Int J Fatigue 120:175–183

    Article  Google Scholar 

  211. Yuan L, Ding S, Wen C (2019) Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioactive Materials 4:56–70

    Article  Google Scholar 

  212. Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3(2):231–245

    Article  Google Scholar 

  213. Zadpoor AA (2019) Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater 85:41–59

    Article  Google Scholar 

  214. Zargarian A, Esfahanian M, Kadkhodapour J, Ziaei-Rad S, Zamani D (2019) On the fatigue behavior of additive manufactured lattice structures. Theoret Appl Fract Mech 100:225–232

    Article  Google Scholar 

  215. Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng 30(3):515–527

    Article  Google Scholar 

  216. Zhang J, Chaudhari A, Wang H (2019) Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J Manuf Process 45:710–719

    Article  Google Scholar 

  217. Zhanga XZ, Leary M, Tangb HP, Songc T, Qianb M (2018) Selective electron beam manufactured Ti–6Al–4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Current Opin Solid State Mater Sci 75–99

  218. Zhao S, Li SJ, Hou WT, Hao YL, Yang R, Misra RDK (2016) The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J Mech Behav Biomed Mater 59:251–264

    Article  Google Scholar 

  219. Zhou H, Zhao M, Ma Z, Zhang DZ, Fu G (2020) Sheet and network based functionally graded lattice structures manufactured by selective laser melting: Design, mechanical properties, and simulation. Int J Mech Sci 175:105480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamaid Mahmood Khan.

Additional information

Technical Editor: Zilda de Castro Silveira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, M., Khan, H.M., Wheatley, G. et al. Influence of post-processing on additively manufactured lattice structures. J Braz. Soc. Mech. Sci. Eng. 44, 389 (2022). https://doi.org/10.1007/s40430-022-03703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03703-8

Keywords

Navigation