Skip to main content
Log in

Adaptive second-order sliding model-based fault-tolerant control of a lower-limb exoskeleton subject to tracking the desired trajectories augmented by CPG algorithm

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Reference trajectory generation and trajectory tracking in the presence of uncertainties and disturbances are among the most challenging topics in the realm of exoskeletons. Central pattern generation (CPG) is one of the trajectory design methods for walking robots, which acts as a limit cycle and produces smooth and rhythmic trajectories by rapid cancelation of the effects of exogenous disturbances. In this paper, the reference trajectories of robot joints are designed by combining modified Hopfield oscillators, which allows adjusting the frequency and amplitude of walking. For online modification of the reference joint trajectories, feedback error signal from zero-moment point (ZMP) criterion and error signal of impedance filter are used. To counteract the adverse effects of uncertainties and exogenous disturbances and to achieve high trajectory tracking performance, dynamic adaptive fast terminal sliding mode control strategy (DAFTSMC) is applied, which provides chattering-free control signals and demonstrates finite-time convergence rate, as well as high robustness against uncertainties and disturbances with unknown range. Moreover, the robot’s maximum walking stability based on the ZMP criterion is achieved through the proper movement of the waist joint. Additionally, control parameters, oscillator gains, and their connections are optimized to ensure the highest performance. Finally, the performance of the proposed method is compared with two other control schemes: conventional sliding mode control (SMC) and CPG-based hybrid SMC. The obtained results show the superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bogue R (2009) Exoskeletons and robotic prosthetics: a review of recent developments. Ind Robot Int J 36(5):421–427

    Article  Google Scholar 

  2. R. S. Mosher, Handy man to Hardiman,TechnicalReport,SAE Technical Paper, (1967).

  3. Vukobratovic M, Borovac B, Surla D, Stokic D (1990) Biped Locomotion. Springer, Berlin, pp 1–349

    Book  MATH  Google Scholar 

  4. Jezernik S, Colombo G, Kelly T, Frueh H, Morari M (2003) Robotic orthosis Lokomat: a rehabilitation and research tool. Technol Neural Interface 6(1):108–115

    Article  Google Scholar 

  5. Duschau-Wicke A, Brunsch T, Lünenburger L, Riener R (2008) Adaptive support for patient-cooperative gait rehabilitation with the lokomat, IEEE/RSJ international conference on intelligent robots and systems acropolis convention center nice, France, 2008

  6. Kazerooni H (2006) Hybrid Control of the berkeley lower extremity exoskeleton (BLEEX). Int J Robot 25(2):561–573

    Article  Google Scholar 

  7. Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, Berlin, pp 773–793

    Book  MATH  Google Scholar 

  8. Yan T, Cempini M, Oddo CM, Vitiello N (2015) Review of assistive strategies in powered lower-limb orthosisand exoskeletons. Robot Auton Syst 64(1):120–136

    Article  Google Scholar 

  9. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653

    Article  Google Scholar 

  10. Fujiwara K, Kanehiro F, Kajita S, Yokoi, H. Saito, K. Harada, K. Kaneko and H. Hirukawa. The first human-size humanoid that can fall over safely and stand up again. In: F. Kanehiro (eds) Proceedings of the IEEE/RSJ international conference on intelligent robots and systems IROS, 2(2003), 1920–1926

  11. Li C, Lowe R, Ziemke T (2014) A novel approach to locomotion learning: actor-critic architecture using central pattern generators and dynamic motor primitives. Front Neurorobot 8(3):1–17

    Google Scholar 

  12. Ijspeert AJ, Crespi A, Ryczko D (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315:1416–1420

    Article  Google Scholar 

  13. Chiang MH, Chiang FR (2013) Anthropomorphic design of the human-like walking robot. J Bionic Eng 10(2):186–193

    Article  Google Scholar 

  14. Yu J, Ding R, Yang Q, Tan M, Wang W, Zhang J (2012) On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans Mechatron 17:847–856

    Article  Google Scholar 

  15. Wu QD, Liu CJ, Zhang JQ, Chen QJ (2009) Survey of locomotion control of legged robots inspired by biological concept. Sci China Ser F Inf Sci 52:1715–1729

    Article  MATH  Google Scholar 

  16. Santos CP, Matos V (2012) CPG modulation for navigation and omni directional quadruped locomotion. Robot Auton Syst 60:912–927

    Article  Google Scholar 

  17. Liu C, Wang D, Goodman ED, Chen Q (2016) Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators. J Bionic Eng 13:572–584

    Article  Google Scholar 

  18. Jayi MOA (2016) Modelling and control of actuated lower limb exoskeletons: a mathematical application using central pattern generators and nonlinear feedback control techniques, PHD Thesis, Université Paris-Est

  19. Righetti L, Ijspeert AJ (2006) Programmable central generators: an application to biped locomotion control. In: Proceedings of the 2006 IEEE international conference on robotics and automation Orlando, Florida

  20. Fujiwara K, Kanehiro F, Kajita S, Yokoi K, Saito H, Harada K, Kaneko K, Hirukawa H (2012) Evolution of central pattern generators for the control of a five-link bipedal walking mechanism. PALADYN J Behav Robot 3(1):45–53–1926

  21. Qu Z, Dorsey J (1991) Robust tracking control of robots by a linear feedback law. IEEE Trans Autom Control 36:1081–1084

    Article  MathSciNet  MATH  Google Scholar 

  22. Messuriand D, Kien D (1985) Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. Robot Autom IEEE 1(3):141–132

    Google Scholar 

  23. Moosavian SAA, Alipour K, Bahramzadeh Y (2007) Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. Intell Robot Syst. In: IROS 2007. IEEE/RSJ international conference, USA

  24. Takhmar A (2008) MHS measure for postural stability monitoring and control of bipedrobots. In: Advancedintelligent mechatronics, 2008 .AIM 2008. IEEE/ASME internationalConference on, China

  25. Moosavian SAA, Takhmar A (2007) Stable Gait planning for humanoids motion, in ISME, Iran

  26. Mokhtari M, Taghizadeh M, Mazare M (2020) Optimal adaptive super twisting sliding mode controlbased on zero momentum point stability criterion of a lower limb exoskeleton. AmirKabir J Mech Eng 50(4):525–532

    Google Scholar 

  27. Mazare M, Tolu S, Taghizadeh M (2021) Adaptive variable impedance control for a modular soft robot manipulator in configuration space. Meccanica 1–15

  28. Tran HT, Cheng H, Rui H, Lin XC, Duong MK, Chen QM (2016) Evaluation of a fuzzy-based impedance control strategy on a powered lower Exoskeleton. Int J Soc Robot 8:103–123

    Article  Google Scholar 

  29. Chen X, Chen W, Wang J, Zhang J (2017) Impedance control for a lower-limb rehabilitation robot. In: 12th IEEE conference on industrial electronics and applications (ICIEA)

  30. Hemami H, Golliday CL (1977) The inverted pendulum and biped stability. Math Biosci 2:95–110

    Article  Google Scholar 

  31. Hong Y (2002) Finite-time stabilization and stabilizeability of a class of controllable systems. Syst Control Lett 46:231–236

  32. Venkataraman S, Gulati S (1991) Terminal sliding modes: a new approach to nonlinear control synthesis. Adv Robot 43:443–448

    Google Scholar 

  33. Bartolini G, Ferrara A, Levant A, Usai E (1999) On second order sliding mode controllers. Variable structure systems, sliding mode and nonlinear control, Springer, 247, 329–350

  34. Wang H, Shi L, Man Z, Zheng J, Li S, Yu M, Jiang C, Kong H, Cao Z (2018) Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE Trans Ind Electron 65:7160–7172

    Article  Google Scholar 

  35. Mazare M, Taghizadeh M, Ghanbari PG (2020) Faulttolerant control based on adaptive super-twisting nonsingular integral-type terminal sliding mode for a delta parallel robot. J Braz Soc Mech Sci Eng 42(8):1–15

    Article  Google Scholar 

  36. Mazare M, Taghizadeh M, Ghanbari PG (2021) Pitch actuator fault-tolerant control of wind turbines based on time delay control and disturbance observer. Ocean Eng 238:109724

    Article  Google Scholar 

  37. Mazare M, Taghizadeh M, Ghanbari PG (2021) Fault tolerant control of wind turbines with simultaneous actuator and sensor faults using adaptive time delay control. Renew Energy 174:86–101

    Article  Google Scholar 

  38. M. Mokhtari, M. Taghizadeh, M. Mazare, Impedance Control Based on Optimal Adaptive High Order Super Twisting Sliding Mode for a 7-DOF Lower Limb Exoskeleton, meccanica, 56(2021) 538–548.

  39. Yang J, Su J, Li S, Yu X (2014) High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans Ind Inf 610:604–614

    Article  Google Scholar 

  40. Hu Y, Wang H (2020) Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer Mechanical. Systems and Signal Processing 135:106375

    Article  Google Scholar 

  41. Nevil H (1985) Impedance Control: An Approach to Manipulation: Part1, Part2, Part3. J Dyn Syst Meas Contr 107(1):1–24

    Article  Google Scholar 

  42. M. E. Abardeh, Unsymmetrical Path Planning for Biped Robot Passing through Obstacles, MS Thesis, Ferdowsi University of Mashhad, (2012).

  43. M. Ruby, R. M. Botez,Trajectory Optimization for vertical navigation using the harmony search algorithm,IFAC-PapersOnLine, 49 (17) (2016).

  44. Kawamoto H, Sankai Y (2005) Power assist method based on phase sequence and muscle force condition for HAL. AdvancedRobotics 19(7):717–734

    Google Scholar 

  45. P.K. Kyaw, K. Sandar, M. Khalid, W. Juan, Y. Li, Z. Chen, Opportunities in robotic exoskeletons hybrid assistive limbSUIT (MT5009), Robotic Exoskeletons: Becoming Economically Feasible, 21(1) (2013).

  46. Karavas N, Ajoudani A, Tsagarakis N (2015) Tele-impedance based assistive control for a compliant knee exoskeleton. Robot Auton Syst 73:78–90

    Article  Google Scholar 

  47. Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Righetti, A. J. Ijspeert, Programmable central pattern generators: an application to biped locomotion control. IEEE. Conference on Robotics and Automation Orlando, Florida - May 2006

  49. Mazare M, Taghizadeh M, GhasemKazemi M (2018) Optimal hybrid scheme of dynamic neural network and PID controller based on harmony search algorithm to control a PWM-driven pneumatic actuator position. J Vib Control 24(16):3538–3554

    Article  MathSciNet  Google Scholar 

  50. Mazare M, Taghizadeh M (2019) Geometric optimization of a delta type parallel robot using harmony search algorithm. Robotica 37(9):1494–1512

    Article  Google Scholar 

  51. Madani T, Daachi B, Djouani K (2017) Modular -controller-design-based fast terminal sliding mode for articulated exoskeleton systems, IEEE Transa Control Syst Technol 25(3)

  52. Yang J, Su J, Li S, Yu X (2014) High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans Ind Inform 610:604–614

    Article  Google Scholar 

  53. Ding S, Li S (2017) Second-order sliding mode controller design subject to mismatched term. Automatica 77:388–392

    Article  MathSciNet  MATH  Google Scholar 

  54. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice-Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  55. Vanderborght B, Albu-Schaeffer A, Bicchi A (2013) Variable impedance actuators: a review. Robot Auton Syst 61:1601–1614

    Article  Google Scholar 

  56. Richardson RC (2001) Actuation and control for robotic physiotherapy, Ph.D. thesis, School of Mechanical Engineering University of Leeds

  57. Mousavi PN, Bagheri A (2007) Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations. Appl Math Model 31(1):18–37

    Article  MATH  Google Scholar 

  58. Mazare M, Mostafa T (2022) Uncertainty estimator-based dual layer adaptive fault-tolerant control for wind turbines. Renew Energy

  59. Ghaf-Ghanbari P, Mazare M, Taghizadeh M (2021) Active fault-tolerant control of a schonflies parallel manipulator based on time delay estimation. Robotica 39(8):1518–1535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Taghizadeh.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, M., Taghizadeh, M. & Ghaf-Ghanbari, P. Adaptive second-order sliding model-based fault-tolerant control of a lower-limb exoskeleton subject to tracking the desired trajectories augmented by CPG algorithm. J Braz. Soc. Mech. Sci. Eng. 44, 423 (2022). https://doi.org/10.1007/s40430-022-03694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03694-6

Keywords

Navigation