Skip to main content
Log in

Simultaneous use of non-uniform magnetic field and porous medium for the intensification of convection heat transfer of a magnetic nanofluid inside a tube

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the influence of a magnetic field on the ferrofluid forced convection characteristics in a semi-porous tube by applying the finite volume method and the Darcy–Brinkman–Forchheimer model. Two-phase simulation is performed by taking into account the effects of Brownian motion, thermophoresis, and magnetophoresis of nanoparticles. Two cases are considered for this: case 1 with a porous medium at the center of the tube and case 2 with a porous layer in the vicinity of the wall. Some influential parameters, including magnetic and Darcy numbers, thickness, and thermal conductivity of porous medium, are studied in the pressure drop and heat transfer enhancement in both cases. Results indicate that in case 1, the applied magnetic field (with \(Mn = 1 \times 10^{6}\)) can only lead to an increase of about 78% while a porous medium (with \(Da = 10^{ - 4}\)) causes a 78% improvement alone. The effect of both techniques simultaneously will, however, result in an approximately 120% enhancement in the heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

c :

Specific heat at constant pressure (Jkg1 K1)

C F :

Form drag coefficient (−)

D :

Tube diameter (m)

Da :

Darcy number (−)

D B :

Brownian diffusivity (m2s1)

d p :

Particle diameter (m)

D T :

Thermophoretic diffusivity (m2s1)

f :

Fanning friction factor

H :

Intensity of magnetic field (Am1)

J p :

Mass flux vector of nanoparticle (kg m2 s1)

K :

Permeability of porous medium (m2)

k B :

Boltzmann’s constant (JK1)

Mn :

Magnetic number (−)

m p :

Magnetic moment of nanoparticles (Am2)

M r :

Reference magnetization (Am1)

Num :

Mean Nusselt number (−)

q* :

Non-dimensional heat flux (−)

r :

Radial coordinate (m)

Re:

Reynolds number (−)

T :

Temperature (K)

\({T}_{b}\) :

Mean fluid temperature (K)

V z ,V r :

Velocity components (ms1

μ B :

Bohr magneton (9.274 × 10−24 Am2)

μ o :

Vacuum permeability (4π × 10−7 TmA1)

ε :

Porosity (-)

\(\xi\) :

Langevin parameter (-)

ρ :

Density (kgm3)

\(\phi\) :

Volume fraction of particles (−)

bf :

Base fluid

mnf:

Magnetic nanofluid

in:

Inlet

np:

Nanoparticle

p :

Porous

w :

Wall

References

  1. Alam T, Kim MH (2018) A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev 81:813–839. https://doi.org/10.1016/j.rser.2017.08.060

    Article  Google Scholar 

  2. Laohalertdecha S, Naphon P, Wongwises S (2007) A review of electrohydrodynamic enhancement of heat transfer. Renew Sustain Energy Rev 11:858–876. https://doi.org/10.1016/j.rser.2005.07.002

    Article  Google Scholar 

  3. Rosensweig RE (1988) An introduction to ferrohydrodynamics (text of the invited tutorial lecture). Chem Eng Commun 67:1–18. https://doi.org/10.1080/00986448808940374

    Article  Google Scholar 

  4. Mehta JS, Kumar R, Kumar H, Garg H (2018) Convective heat transfer enhancement using ferrofluid: a review. J Therm Sci Eng Appl 10(1115/1):4037200

    Google Scholar 

  5. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

    Article  MATH  Google Scholar 

  6. Sajid MU, Ali HM (2019) Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev 103:556–592. https://doi.org/10.1016/j.rser.2018.12.057

    Article  Google Scholar 

  7. Rosensweig RE (1985) Ferrohydrodynamics, Cambridge Univ. (1997) p 116.

  8. Odenbach S (2003) Ferrofluids–magnetically controlled suspensions. Coll Surf A Physicochem Eng Asp 217(1–3):171–178. https://doi.org/10.1016/S0927-7757(02)00573-3

    Article  Google Scholar 

  9. Bahiraei M, Hangi M (2015) Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater 374:125–138. https://doi.org/10.1016/j.jmmm.2014.08.004

    Article  Google Scholar 

  10. Goharkhah M, Ashjaee M (2014) Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. J Magn Magn Mater 362:80–89. https://doi.org/10.1016/j.jmmm.2014.03.025

    Article  Google Scholar 

  11. Shakiba A, Vahedi K (2016) Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J Magn Magn Mater 402:131–142. https://doi.org/10.1016/j.jmmm.2015.11.039

    Article  Google Scholar 

  12. Khosravi A, Malekan M, Assad MEH (2019) Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector. Renew Energy 134:54–63. https://doi.org/10.1016/j.renene.2018.11.015

    Article  Google Scholar 

  13. Fadaei F, Shahrokhi M, Molaei Dehkordi A, Abbasi Z (2017) Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field. J Magn Magn Mater 429:314–323. https://doi.org/10.1016/j.jmmm.2017.01.046

    Article  Google Scholar 

  14. Hekmat MH, Ziarati KK (2019) Effects of nanoparticles volume fraction and magnetic field gradient on the mixed convection of a ferrofluid in the annulus between vertical concentric cylinders. Appl Therm Eng 152:844–857. https://doi.org/10.1016/j.applthermaleng.2019.02.124

    Article  Google Scholar 

  15. Shyam S, Mehta B, Mondal PK, Wongwises S (2019) Investigation into the thermo-hydrodynamics of ferrofluid flow under the influence of constant and alternating magnetic field by InfraRed Thermography. Int J Heat Mass Transf 135:1233–1247. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.050

    Article  Google Scholar 

  16. Sheikhnejad Y, Hosseini R, Saffar-Avval M (2015) Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube. J Magn Magn Mater 389:136–143. https://doi.org/10.1016/j.jmmm.2015.04.029

    Article  Google Scholar 

  17. Asadi A, Hossein Nezhad A, Sarhaddi F, Keykha T (2019) Laminar ferrofluid heat transfer in presence of non-uniform magnetic field in a channel with sinusoidal wall: a numerical study. J Magn Magn Mater 471:56–63. https://doi.org/10.1016/j.jmmm.2018.09.045

    Article  Google Scholar 

  18. Bahiraei M, Hangi M, Rahbari A (2019) A two-phase simulation of convective heat transfer characteristics of water–Fe3O4 ferrofluid in a square channel under the effect of permanent magnet. Appl Therm Eng 147:991–997. https://doi.org/10.1016/j.applthermaleng.2018.11.011

    Article  Google Scholar 

  19. Soltanipour H, Gharegöz A, Oskooee MB (2020) Numerical study of magnetic field effect on the ferrofluid forced convection and entropy generation in a curved pipe. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-2218-5

    Article  Google Scholar 

  20. Bezaatpour M, Rostamzadeh H (2020) Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2019.114462

    Article  Google Scholar 

  21. Bezaatpour M, Goharkhah M (2020) Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2019.114801

    Article  Google Scholar 

  22. Moghadam HK, Baghbani SS, Babazadeh H (2021) Study of thermal performance of a ferrofluid with multivariable dependence viscosity within a wavy duct with external magnetic force. J Therm Anal Calorim 143:3849–3866. https://doi.org/10.1007/s10973-020-09324-4

    Article  Google Scholar 

  23. Yousefi E, Nazif HR, Najafi Khaboshan H, Azarinia A (2021) Non-uniform magnetic field effect on forced convection heat transfer of flattened tubes using two-phase mixture model. Heat Transf Eng 42:1041–1058. https://doi.org/10.1080/01457632.2020.1766251

    Article  Google Scholar 

  24. Sadrhosseini H, Sehat A, Shafii MB (2016) Effect of magnetic field on internal forced convection of ferrofluid flow in porous media. Exp Heat Transf 29:1–16. https://doi.org/10.1080/08916152.2014.926431

    Article  Google Scholar 

  25. Amani M, Ameri M, Kasaeian A (2017) Investigating the convection heat transfer of Fe3O4 nanofluid in a porous metal foam tube under constant magnetic field. Exp Therm Fluid Sci 82:439–449. https://doi.org/10.1016/j.expthermflusci.2016.12.003

    Article  Google Scholar 

  26. Sheikhnejad Y, Hosseini R, Saffar Avval M (2017) Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars. J Magn Magn Mater 424:16–25. https://doi.org/10.1016/j.jmmm.2016.09.098

    Article  Google Scholar 

  27. Sheikhnejad Y, Ansari AB, Ferreira J, Martins N (2019) Effects of parallel magnet bars and partially filled porous media on magneto-thermo-hydro-dynamic characteristics of pipe ferroconvection. Int J Heat Mass Transf 136:1273–1281. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.085

    Article  Google Scholar 

  28. Fadaei F, Shahrokhi M, Molaei Dehkordi A, Abbasi Z (2019) Forced-convection heat transfer of ferrofluids in a circular duct partially filled with porous medium in the presence of magnetic field. J Magn Magn Mater 475:304–315. https://doi.org/10.1016/j.jmmm.2018.11.032

    Article  Google Scholar 

  29. Hemmat Esfe M, Afrand M, Esfandeh S (2020) Investigation of the effects of various parameters on the natural convection of nanofluids in various cavities exposed to magnetic fields: a comprehensive review. J Therm Anal Calorim 140:2055–2075. https://doi.org/10.1007/s10973-019-08939-6

    Article  Google Scholar 

  30. Hemmat Esfe M, Bahiraei M, Hajbarati H, Valadkhani M (2020) A comprehensive review on convective heat transfer of nanofluids in porous media: energy-related and thermohydraulic characteristics. Appl Therm Eng 178:115487. https://doi.org/10.1016/j.applthermaleng.2020.115487

    Article  Google Scholar 

  31. Bezaatpour M, Rostamzadeh H (2020) Energetic and exergetic performance enhancement of heat exchangers via simultaneous use of nanofluid and magnetic swirling flow: a two-phase approach. Therm Sci Eng Prog 20:100706. https://doi.org/10.1016/j.tsep.2020.100706

    Article  Google Scholar 

  32. Shahsavar A, Ansarian R, Bahiraei M (2018) Effect of line dipole magnetic field on entropy generation of Mn–Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model. Powder Technol 340:370–379. https://doi.org/10.1016/j.powtec.2018.09.052

    Article  Google Scholar 

  33. Mosavi A, Sedeh SN, Toghraie D, Karimipour A (2021) Analysis of entropy generation of ferrofluid flow in the microchannel with twisted porous ribs: the two-phase investigation with various porous layers. Powder Technol 380:349–357. https://doi.org/10.1016/j.powtec.2020.11.078

    Article  Google Scholar 

  34. Chalmers MZJJ 2007 Magnetic cell separation, Vol 32, 1st ed., Elsevier https://www.elsevier.com/books/magnetic-cell-separation/zborowski/978-0-444-52754-7.

  35. H. Yamaguchi, <[H._Yamaguchi__(auth.)]_Engineering_Fluid_Mechanic(BookZZ.org).pdf>, Springer, Dordrecht, 2008.

  36. Aminfar H, Mohammadpourfard M, Ahangar Zonouzi S (2013) Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J Magn Magn Mater 327:31–42. https://doi.org/10.1016/j.jmmm.2012.09.011

    Article  Google Scholar 

  37. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  38. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5

    Article  MATH  Google Scholar 

  39. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571. https://doi.org/10.1063/1.1700493

    Article  Google Scholar 

  40. A treatise on electricity and magnetism. Nature. 7(1873):478–480. https://doi.org/10.1038/007478a0.

  41. Syam Sundar L, Naik MT, Sharma KV, Singh MK, Siva Reddy TC (2012) Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp Therm Fluid Sci 37:65–71. https://doi.org/10.1016/j.expthermflusci.2011.10.004

    Article  Google Scholar 

  42. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transfer 128:240–250. https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  43. NieldDA, Bejan A 2017 Convection in porous media. https://doi.org/10.1007/978-3-319-49562-0

  44. Soltanipour H (2020) Two-phase simulation of magnetic field effect on the ferrofluid forced convection in a pipe considering Brownian diffusion, thermophoresis, and magnetophoresis. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-020-00725-w

    Article  Google Scholar 

  45. Baytaş AC (2003) Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase, non-Darcy porous medium. Int J Energy Res 27:975–988. https://doi.org/10.1002/er.929

    Article  Google Scholar 

  46. Kiradjiev KB, Halvorsen SA, Van Gorder RA, Howison SD (2019) Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids. Int J Therm Sci 145:106009. https://doi.org/10.1016/j.ijthermalsci.2019.106009

    Article  Google Scholar 

  47. Smith DS, Alzina A, Bourret J, Nait-Ali B, Pennec F, Tessier-Doyen N, Otsu K, Matsubara H, Elser P, Gonzenbach UT (2013) Thermal conductivity of porous materials. J Mater Res 28:2260–2272. https://doi.org/10.1557/jmr.2013.179

    Article  Google Scholar 

  48. Aichlmayr HT, Kulacki FA (2006) The effective thermal conductivity of saturated porous media. Adv Heat Transf 39:377–460. https://doi.org/10.1016/S0065-2717(06)39004-1

    Article  Google Scholar 

  49. Kandula M (2011) On the effective thermal conductivity of porous packed beds with uniform spherical particles. J Porous Media 14:919–926. https://doi.org/10.1615/JPorMedia.v14.i10.70

    Article  Google Scholar 

  50. Gong L, Wang Y, Cheng X, Zhang R, Zhang H (2014) A novel effective medium theory for modelling the thermal conductivity of porous materials. Int J Heat Mass Transf 68:295–298. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.043

    Article  Google Scholar 

  51. Nield DA (1991) Estimation of the stagnant thermal conductivity of saturated porous media. Int J Heat Mass Transf 34:1575–1576. https://doi.org/10.1016/0017-9310(91)90300-4

    Article  Google Scholar 

  52. Shliomis MI (2002) Convective instability of magnetized ferrofluids: influence of magnetophoresis and soret effect, pp 355–371, https://doi.org/10.1007/3-540-45791-7_17

  53. Shliomis MI, Smorodin BL (2002) Convective instability of magnetized ferrofluids. J Magn Magn Mater 252:197–202. https://doi.org/10.1016/S0304-8853(02)00712-6

    Article  Google Scholar 

  54. Beckermann C, Ramadhyani S, Viskanta R (1987) Natural convection flow and heat transfer between a fluid layer and a. porous layer inside a rectangular enclosure. J Heat Transfer 109:363–370. https://doi.org/10.1115/1.3248089

    Article  Google Scholar 

  55. Baytaş AF, Baytaş AC (2017) Thermal non-equilibrium natural convection in a square enclosure with heat-generating porous layer on inner walls. Transp Porous Media 120:167–182. https://doi.org/10.1007/s11242-017-0914-0

    Article  MathSciNet  Google Scholar 

  56. Patankar SV (1980) Numerical heat transfer and fluid flow https://doi.org/10.13182/nse81-a20112.

  57. Versteeg HK, Malalasekera W, Orsi G, Ferziger JH, Date AW, Anderson JD, 1995 An introduction to computational fluid dynamics–the finite volume method, Pearson education, http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Computational+fluid+dynamics.+The+basics+with+applications#6%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Computational+Fluid+Dynamics:+The+Basics+with+Applications.+1995%23.

  58. F. Moukalled, L. Mangani, M. Darwish, Erratum to The finite volume method in computational fluid dynamics [Fluid Mechanics and Its Applications, 113, DOI https://doi.org/10.1007/978-3-319-16874-6], Springer, 2016. https://doi.org/10.1007/978-3-319-16874-6_21.

  59. Asfer M, Mehta B, Kumar A, Khandekar S, Panigrahi PK (2016) Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. Int J Heat Fluid Flow 59:74–86. https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009

    Article  Google Scholar 

  60. Corcione M, Cianfrini M, Quintino A (2013) Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties. Int J Therm Sci 71:182–195. https://doi.org/10.1016/j.ijthermalsci.2013.04.005

    Article  Google Scholar 

  61. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I (2018) Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf 119:939–961. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.136

    Article  Google Scholar 

  62. Morosuk TV (2005) Entropy generation in conduits filled with porous medium totally and partially. Int J Heat Mass Transf 48:2548–2560. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.018

    Article  MATH  Google Scholar 

  63. Loukopoulos VC, Tzirtzilakis EE (2004) Biomagnetic channel flow in spatially varying magnetic field. Int J Eng Sci 42:571–590. https://doi.org/10.1016/j.ijengsci.2003.07.007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

HS: Data collection, Analysis, Methodology, Validation, Writing—Editing. Farzad P: Data curation, Conceptualization, Writing—review & editing.

Corresponding author

Correspondence to Hossein Soltanipour.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanipour, H., Pourfattah, F. Simultaneous use of non-uniform magnetic field and porous medium for the intensification of convection heat transfer of a magnetic nanofluid inside a tube. J Braz. Soc. Mech. Sci. Eng. 43, 459 (2021). https://doi.org/10.1007/s40430-021-03174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03174-3

Keywords

Navigation