Skip to main content

Advertisement

Log in

PID controller with novel PSO applied to a joint of a robotic manipulator

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a speed control of one robotic manipulator joint driven by a three-phase induction motor (IM) that uses space vector modulation based on pulse width modulation (SVPWM). Three metaheuristic algorithms are considered: genetic algorithm (GA), differential evolution (DE) and classical particle swarm optimization (PSO). Furthermore, in this paper, the Quick PSO algorithm is proposed to obtain an improvement from PSO. These techniques are considered in order to achieve an optimized tuning for proportional-integral-derivative (PID) controllers in the speed control of the IM-SVPWM. The optimization procedure is performed through computational simulation. Once obtained, the optimized parameters are applied in a practical system that uses a digital signal processor. Experimental results validate the proposed approach, comparing it to other tuning methods of PI and PID controllers, such as GA, PSO and DE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Puranen, J (2006) Induction motor versus permanent magnet synchronous motor in motion control applications: a comparative study. Doctoral thesis, Acta Universitatis Lappeenrantaensis

  2. Santana ES, Bim E, Amaral WC (2008) A predictive algorithm for controlling speed and rotor flux of induction motor. IEEE Trans Ind Electron 55(12):4398–4407

    Article  Google Scholar 

  3. Beerten J, Verveckken J, Driesen J (2003) Predictive direct torque control for flux and torque ripple reduction. IEEE Trans Ind Electron 57(1):404–412

    Article  Google Scholar 

  4. Jacobina CB, Ribeiro LA, Melo Filho JB, Salvadori F, Lima AMN (2003) Sistema de acionamento com motor de indução orientado indiretamente pelo campo com adaptação MRAC da velocidade. Sba: Controle & Automação Sociedade Brasileira de Automatica 14(1):41–49

    Google Scholar 

  5. Markadeh GRA, Soltani J (2006) Robust direct torque and ux control of adjustable speed sensorless induction machine drive based on space vector modulation using a PI predictive controller. Electr Eng 88(6):485–496

    Article  Google Scholar 

  6. Silva WA, de Júnior Souza AB, Torrico BC, Honório DA, Neto TRF, dos Reis LLN, Barreto LHSC (2015) Generalized predictive control robust for position control of induction motor using field-oriented control. Electr Eng 97(3):195–204

    Article  Google Scholar 

  7. Zhihua C, Xiaozhi G (2012) Theory and applications of swarm intelligence. Neural Comput Appl 21(2):205–206 (Springer-Verlag)

    Article  Google Scholar 

  8. Kanojiya RG, Meshram PM (2012) Optimal tuning of PI controller for speed control of DC motor drive using particle swarm optimization. In: International conference on advances in power conversion and energy technologies (APCET), Mylavaram, Andhra Pradesh, India

  9. Souza DA, de Mesquita VA, Reis LL, Silva WA, Batista JG (2021) Optimal lqi and pid synthesis for speed control of switched reluctance motor using metaheuristic techniques. Int J Control Autom Syst 19(1):221–229

    Article  Google Scholar 

  10. Bingul Z, Karahan O (2011) Tuning of fractional PID controllers using PSO algorithm for robot trajectory control. In: 2011 IEEE international conference on mechatronics

  11. Sabir MM, Khan JA (2014) Optimal design of PID controller for the speed control of DC motor by using metaheuristic techniques. In: Advances in artificial neural systems, 2014, Article ID 126317

  12. Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 1(11):83–92

    Article  Google Scholar 

  13. Li L, Liu W, Cartes DA (2008) Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng Appl Artif Intell 7(21):1092–1100. https://doi.org/10.1016/j.engappai.2007.10.002

    Article  Google Scholar 

  14. Sushnigdha G, Joshi A (2018) Evolutionary method based integrated guidance strategy for reentry vehicles. Eng Appl Artif Intell 6:168–177. https://doi.org/10.1016/j.engappai.2017.11.010

    Article  Google Scholar 

  15. Premkumara K, Manikandan BV (2015) Speed control of Brushless DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system. Appl Soft Comput 32:403–419

    Article  Google Scholar 

  16. Guan S-p, Zhang Y-d (2016) An improved interval PSO algorithm with dynamic shrinking. In: 2016 Chinese control and decision conference (CCDC). IEEE

  17. Hao Z, Li X, Ding Y (2018) An improved PSO algorithm for node localization in indoor long-narrow confined space. In: 2018 13th IEEE conference on industrial electronics and applications (ICIEA). IEEE

  18. Solihin MI, Tack LF, Kean ML (2011) Tuning of PID controller using particle swarm optimization (PSO). In: Proceeding of the international conference on advanced science, engineering and information technology, vol 1

  19. Alkhoori F, Safwan SB, Zweiri Y, Necip SM (2017) PID-LQR controllers for quad-rotor hovering mode. In: International conference on systems and informatics (ICSAI 2017), 24–27 Sep

  20. Shahida K, Shahid M, Ibraheem, HC (2014) dynamic modeling and stabilization of quadrotor using PID controller. In: International conference on advances in computing, communications and informatics (ICACCI), 24–27 Sep

  21. Bose BK (1986) Power electronics and AC drives, vol 2. Prentince-Hall, Englewood

    Google Scholar 

  22. Yu Z (2001) Space vector PWM witch TMS320C24x using hardware and software determined switching patterns. Application report SPRA524, Texas Instruments

  23. del Carmen, de Jesus Torres F (2019) Task-space synchronization of robot manipulators driven by three-phase induction motors. J Control Eng Appl Inf 21(3):63–70

    Google Scholar 

  24. Spong MW, Vidyasagar M (2008) Robot dynamics and control. Wiley, London

    Google Scholar 

  25. Li J, Ren H-P, Zhong Y-R (2014) Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers. IEEE Trans Ind Appl 51(1):712–720

    Article  Google Scholar 

  26. Goh KB, Dunnigan MW, Williams BW (2004) Robust chattering-free (higher order) sliding mode control for a vector-controlled induction machine. In: 2004 5th Asian control conference (IEEE Cat. No. 04EX904), vol 2. IEEE

  27. Shete O, Vitekar M, Patil M (2017) Design and control of an elevator control system using PLC. In: IJIREEICE, pp 142–146

  28. Ibrahim A, Alexander R, Shahid M, Sanghar U, Dsouza R, Souza D (2016) Control systems in robotics: a review. Int J Eng Invent 5:2278–7461

    Google Scholar 

  29. de Souza Júnior AB (2014) Estratégia híbrida aplicada no controle de posição de um sistema de acionamento com motor de indução usando controle de campo orientado, Universidade Federal do Ceará, Fortaleza, Tese Doutorado

  30. Rajendran R (2012) A comparative performance analysis of torque control schemes for induction motor drives. Int J Power Electr Drive Syst 2(2):177

    Google Scholar 

  31. Ibarra L, Ponce P, Molina A (2015) Robust QFT-based control of DTC-speed loop of an induction motor under different load conditions. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2015.06.452

    Article  Google Scholar 

  32. de Souza Júnior AB (2010) Estudo e implementação de um servoposicionador aplicando controle vetorial indireto a um motor de indução trifásico, Universidade Federal do Ceará, Fortaleza, Mestrado

  33. Araki M, Taguchi H (2000) Two-degree-of-freedom PID controllers their functions and optimal tuning. In: IFAC digital control: past, present and future of pid control, no. 57, Spain

  34. Rebouças LR (2017) Controle de um Motor de Induç ao Trifásico como Servoposicionador Aplicado a um Manipulador Robótico Utilizando Controle de Campo Orientado, Universidade Federal do Ceará, Fortaleza, Mestrado

  35. Nise NS (2004) Control systems engineering. Wiley, Hoboken

    MATH  Google Scholar 

  36. Glover FW, Kochenberger GA (eds) (2003) Handbook of metaheuristics. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  37. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. 1st Addison-Wesley Longman Publishing Co., Inc. Boston, MA, ISBN: 0201157675

  38. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks. IV, pp 1942–1948

  39. Alam MN (2004) Particle swarm optimization: algorithm and its codes in MATLAB, 2016. In: Nise NS (ed) Control systems engineering. Wiley, Hoboken

    Google Scholar 

  40. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  41. Batista JG et al (2019) Performance comparison between the PID and LQR controllers applied to a robotic manipulator joint. In: IECON 2019-45th annual conference of the IEEE industrial electronics society, vol 1. IEEE

Download references

Acknowledgements

The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal sde Nível Superior) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josias G. Batista.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, D.A., Batista, J.G., dos Reis, L.L.N. et al. PID controller with novel PSO applied to a joint of a robotic manipulator. J Braz. Soc. Mech. Sci. Eng. 43, 377 (2021). https://doi.org/10.1007/s40430-021-03092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03092-4

Keywords

Navigation