Skip to main content
Log in

Numerical study of magnetic field effect on the ferrofluid forced convection and entropy generation in a curved pipe

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the effect of a magnetic field on the ferrofluid flow pattern, heat transfer and entropy generation in a curved pipe. A non-uniform magnetic field is applied to ferrofluid (water + 2% vol. Fe3O4 nanoparticles) flow and under the constant heat flux boundary condition. Governing equations are solved by the finite volume method and based on the SIMPLE algorithm. The major objective of this work is to illustrate the effects of circumferential angle \(\left( {0^\circ \le \phi \le 180^\circ } \right)\) and strengths of a magnetic field \(\left( {0 \le {\text{Mn}} \le 3 \times 10^{6} } \right)\) on the hydro-thermal behavior and entropy production rate. It is found that circumferential angle of the magnetic source plays an important role in hydro-thermal performance of a curved pipe. At low magnetic numbers, the optimal circumferential location of the magnetic source is \(\phi_{\text{opt}} = 180^\circ\) which leads to the maximum heat transfer enhancement and hydro-thermal performance and the minimal entropy generation rate. For high magnetic numbers, the optimal operating condition occurs at \(\phi = 0^\circ\) and \(\phi = 60^\circ\) depending on the magnetic number. Second law analysis reveals that the major source of entropy generation comes from heat transfer irreversibility which reduces significantly by applying a magnetic field. In the range of studied parameters, the maximum heat transfer enhancement is about 29% which occurs at \(\phi = 0^\circ\) and \({\text{Mn}} = 3 \times 10^{6}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C:

Specific heat at constant pressure (Jkg−1K−1)

d p :

Particle diameter (m)

Ec:

Eckert number (−)

H :

Magnetic field intensity (Am−1)

I :

Electric current (A)

K :

Thermal conductivity (Wm−1 K−1)

k B :

Boltzmann constant (1.380648 × 10−23J K−1)

Ms:

Saturation magnetization (Am−1)

Mn:

Magnetic number (−)

m p :

Magnetic moment of nanoparticles (Am2)

Nu:

Nusselt number(−)

P :

Pressure (Pa)

Pr:

Prandtl number (−)

q′′:

Heat flux (Wm−2)

q*:

Non-dimensional heat flux (−)

r :

Radial coordinate (m)

R c :

Radius of curvature (m)

Re:

Reynolds number (−)

S f :

Volumetric entropy generation rate due to friction (Wm−3 K−1)

S gen :

Total volumetric entropy generation rate (Wm−3 K−1)

S T :

Volumetric entropy generation rate due to heat transfer (Wm−3 K−1)

T :

Temperature (K)

u, v, w :

Velocity components (ms−1)

x, y, z :

Cartesian coordinates (m)

α :

Particle volume fraction (−)

μ :

Dynamic viscosity (Pa s−1)

μ B :

Bohr magneton (9.274 × 10−24 Am2)

μ o :

Vacuum permeability (Tm A−1)

ξ :

Langevin parameter (−)

ρ :

Density (kg m−3)

ϕ v :

Viscous dissipation function (s−1)

f:

Base fluid

ff:

Ferrofluid

in:

Inlet

p:

Nanoparticle

o:

Without magnetic field

References

  1. Rosensweig RE (2013) Ferrohydrodynamics. Courier Corporation

  2. Mehta JS, Kumar R, Kumar H, Garg H (2018) Convective heat transfer enhancement using ferrofluid: a review. J Therm Sci Eng Appl 10(2):020801

    Article  Google Scholar 

  3. Bahiraei M, Hangi M (2015) Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater 374:125–138

    Article  Google Scholar 

  4. Khairul MA, Doroodchi E, Azizian R, Moghtaderi B (2017) Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energy Convers Manag 149:660–674

    Article  Google Scholar 

  5. Yang RJ, Hou HH, Wang YN, Fu LM (2016) Micro-magnetofluidics in microfluidic systems: a review. Sensors Actuators B: Chem 224:1–15

    Article  Google Scholar 

  6. Aursand E, Gjennestad MA, Lervåg KY, Lund H (2016) Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid. J Magn Magn Mater 417:148–159

    Article  Google Scholar 

  7. Li Q, Lian W, Sun H, Xuan Y (2008) Investigation on operational characteristics of a miniature automatic cooling device. Int J Heat Mass Transf 51(21–22):5033–5039

    Article  MATH  Google Scholar 

  8. Xuan Y, Lian W (2011) Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl Therm Eng 31(8–9):1487–1494

    Article  Google Scholar 

  9. Zimmermann K, Zeidis I, Böhm V, Greiser S, Popp J (2010) Ferrofluid-based flow manipulation and locomotion systems. J Intell Mater Syst Struct 21(15):1559–1562

    Article  Google Scholar 

  10. Shokrollahi H (2013) Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater Sci Eng, C 33(5):2476–2487

    Article  Google Scholar 

  11. Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 7(5):1700845

    Article  Google Scholar 

  12. Huang W, Wang X (2016) Ferrofluids lubrication: a status report. Lubr Sci 28(1):3–26

    Article  Google Scholar 

  13. Urreta H, Aguirre G, Kuzhir P, de Lacalle LNL (2018) Seals based on magnetic fluids for high precision spindles of machine tools. Int J Precis Eng Manuf 19(4):495–503

    Article  Google Scholar 

  14. Huang C, Yao J, Zhang T, Chen Y, Jiang H, Li D (2017) Damping applications of ferrofluids: a review. J Magn 22(1):109–121

    Article  Google Scholar 

  15. Goharkhah M, Ashjaee M, Shahabadi M (2016) Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field. Int J Therm Sci 99:113–124

    Article  Google Scholar 

  16. Sheikholeslami M, Rashidi MM, Ganji DD (2015) Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J Mol Liq 212:117–126

    Article  Google Scholar 

  17. Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A: Appl 69(10):1186–1200

    Article  Google Scholar 

  18. Shakiba A, Vahedi K (2016) Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J Magn Magn Mater 402:131–142

    Article  Google Scholar 

  19. Aminfar H, Mohammadpourfard M, Zonouzi SA (2013) Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J Magn Magn Mater 327:31–42

    Article  Google Scholar 

  20. Aminfar H, Mohammadpourfard M, Ahangar Zonouzi S (2014) Numerical investigation of the transient hydrothermal behavior of a ferrofluid flowing through a helical duct in the presence of nonuniform magnetic field. J Heat Transf. https://doi.org/10.1115/1.4026487

    Article  Google Scholar 

  21. Aminfar H, Mohammadpourfard M, Kahnamouei YN (2014) Numerical study of magnetic field effects on the mixed convection of a magnetic nanofluid in a curved tube. Int J Mech Sci 78:81–90

    Article  Google Scholar 

  22. Mousavi SM, Jamshidi N, Rabienataj-Darzi AA (2019) Numerical investigation of the magnetic field effect on the heat transfer and fluid flow of ferrofluid inside helical tube. J Therm Anal Calorim 137(5):1591–1601

    Article  Google Scholar 

  23. Vafeas P, Bakalis P, Papadopoulos PK (2019) Effect of the magnetic field on the ferrofluid flow in a curved cylindrical annular duct. Phys Fluids 31(11):117105

    Article  Google Scholar 

  24. Bahiraei M, Hosseinalipour SM, Hangi M (2014) Numerical study and optimization of hydrothermal characteristics of Mn–Zn ferrite nanofluid within annulus in the presence of magnetic field. J Supercond Novel Magn 27(2):527–534

    Article  Google Scholar 

  25. Fadaei F, Shahrokhi M, Dehkordi AM, Abbasi Z (2017) Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field. J Magn Magn Mater 429:314–323

    Article  Google Scholar 

  26. Gerdroodbary MB, Sheikholeslami M, Mousavi SV, Anazadehsayed A, Moradi R (2018) The influence of non-uniform magnetic field on heat transfer intensification of ferrofluid inside a T-junction. Chem Eng Process 123:58–66

    Article  Google Scholar 

  27. Hekmat MH, Ziarati KK (2019) Effects of nanoparticles volume fraction and magnetic field gradient on the mixed convection of a ferrofluid in the annulus between vertical concentric cylinders. Appl Therm Eng 152:844–857

    Article  Google Scholar 

  28. Dizaji AS, Mohammadpourfard M, Aminfar H (2018) A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field. J Magn Magn Mater 449:185–196

    Article  Google Scholar 

  29. Sun XH, Massoudi M, Aubry N, Chen ZH, Wu WT (2019) Natural convection and anisotropic heat transfer in a ferro-nanofluid under magnetic field. Int J Heat Mass Transf 133:581–595

    Article  Google Scholar 

  30. Khosravi A, Malekan M, Assad ME (2019) Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector. Renew Energy 134:54–63

    Article  Google Scholar 

  31. Özdemir MR, Sadaghiani AK, Motezakker AR, Parapari SS, Park HS, Acar HY, Koşar A (2018) Experimental studies on ferrofluid pool boiling in the presence of external magnetic force. Appl Therm Eng 139:598–608

    Article  Google Scholar 

  32. Shyam S, Mehta B, Mondal PK, Wongwises S (2019) Investigation into the thermo-hydrodynamics of ferrofluid flow under the influence of constant and alternating magnetic field by InfraRed thermography. Int J Heat Mass Transf 135:1233–1247

    Article  Google Scholar 

  33. Nessab W, Kahalerras H, Fersadou B, Hammoudi D (2019) Numerical investigation of ferrofluid jet flow and convective heat transfer under the influence of magnetic sources. Appl Therm Eng 150:271–284

    Article  Google Scholar 

  34. Tzirtzilakis EE, Xenos MA (2013) Biomagnetic fluid flow in a driven cavity. Meccanica 48(1):187–200

    Article  MathSciNet  MATH  Google Scholar 

  35. Yamaguchi H (2008) Engineering fluid mechanics, vol 85. Springer, Berlin

    MATH  Google Scholar 

  36. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46(19):3639–3653

    Article  MATH  Google Scholar 

  37. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571

    Article  Google Scholar 

  38. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    Article  Google Scholar 

  39. Bejan A (1982) Entropy generation through heat and fluid flow. Wiley, London

    Google Scholar 

  40. Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press, London

    MATH  Google Scholar 

  41. Yasuo M, Wataru N (1965) Study on forced convective heat transfer in curved pipes:(1st report, laminar region). Int J Heat Mass Transf 8(1):67–82

    Article  MATH  Google Scholar 

  42. Asfer M, Mehta B, Kumar A, Khandekar S, Panigrahi PK (2016) Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. Int J Heat Fluid Flow 59:74–86

    Article  Google Scholar 

  43. Bianco V, Chiacchio F, Manca O, Nardini S (2009) Numerical investigation of nanofluids forced convection in circular tubes. Appl Therm Eng 29(17–18):3632–3642

    Article  Google Scholar 

  44. Meyer JP, Adio SA, Sharifpur M, Nwosu PN (2016) The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng 37(5):387–421

    Article  Google Scholar 

  45. Akbari M, Galanis N, Behzadmehr A (2011) Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer. Int J Therm Sci 50(8):1343–1354

    Article  Google Scholar 

  46. Duangthongsuk W, Wongwises S (2008) Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int Commun Heat Mass Transf 35(10):1320–1326

    Article  Google Scholar 

  47. Kakaç S, Pramuanjaroenkij A (2016) Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids: a state-of-the-art review. Int J Therm Sci 100:75–97

    Article  Google Scholar 

  48. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250

    Article  Google Scholar 

  49. Motlagh SY, Soltanipour H (2017) Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci 111:310–320

    Article  Google Scholar 

  50. Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D, Akbari OA (2017) The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al2O3 nanofluid in a tube. Int J Mech Sci 131:1106–1116

    Article  Google Scholar 

  51. Bezaatpour M, Goharkhah M (2019) Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink. J Magn Magn Mater 476:506–515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Soltanipour.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz, D.Sc

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanipour, H., Gharegöz, A. & Oskooee, M.B. Numerical study of magnetic field effect on the ferrofluid forced convection and entropy generation in a curved pipe. J Braz. Soc. Mech. Sci. Eng. 42, 135 (2020). https://doi.org/10.1007/s40430-020-2218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2218-5

Keywords

Navigation