Skip to main content
Log in

Numerical investigation of the magnetic field effect on the heat transfer and fluid flow of ferrofluid inside helical tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of a magnetic field on heat and fluid flow of ferrofluid in a helical tube is studied numerically. The helical tube is under constant wall temperature boundary condition. Parametric studies are done to investigate the effects of different factors such as the magnetic field gradient value and Reynolds number on heat transfer rate and pressure drop. Results indicate that the magnetic field increases the Nusselt number by about 40%. At high magnetic gradient value, Nusselt number and friction factor rise slightly, while at low magnetic gradient value, the increment of Nusselt number is considerable. Furthermore, the growth of wall shear stress on tube wall results in lower thermal–hydraulic performance at the high magnetic gradient value. There is an optimum case for thermal–hydraulic performance which results in most top performance of helical tube in the presence of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(B\) :

Magnetic field induction (T)

\(c_{{\rm p}}\) :

Specific heat at constant pressure (J kg−1 K−1)

\(d\) :

Particle diameter (m)

\(D\) :

Tube diameter (m)

\(D_{{\rm c}}\) :

Coil diameter (mm)

De :

Dean number/\(De = Re (D D_{{\rm c}}^{ - 1} )^{1/2}\)

\(f\) :

Skin friction factor

G :

Magnetic field gradient (A m−2)

\(H\) :

Magnetic field intensity (A m−1)

\(h\) :

Heat transfer coefficient (W m−2 K−1)

\(J\) :

Electric current density (A m−2)

\(j\) :

Colburn factor

\(jf\) :

Thermal–hydraulic performance

\(k\) :

Thermal conductivity (W m−1 K−1)

\(K_{{\rm B}}\) :

Boltzmann constant (= 1.3806503 × 10−23 J K−1)

\(L\) :

Langevin function

\(m\) :

Particle magnetic moment (A m−2)

M :

Magnetization (A m−1)

\(M_{{\rm s}}\) :

Saturation magnetization (A m−1)

\(Nu\) :

Nusselt number/\(hDk^{ - 1}\)

\(p_{{\rm c}}\) :

Coil pitch (mm)

\(Pr\) :

Prandtl number

\(P\) :

Pressure (Pa)

\(q''\) :

Heat flux (W m−2)

\(Re\) :

Reynolds number

\(T\) :

Temperature (K)

\(T_{0}\) :

Inlet flow temperature (K)

\(V_{{\rm av}}\) :

Average velocity at tube cross section (m s−1)

\(V = \left( {u,v.w} \right)\) :

Velocity field (m s−1)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\mu_{0}\) :

The magnetic permeability of vacuum (4π × 10−7 T m A−1)

\(\mu_{{\rm B}}\) :

Bohr magneton (= 9.27 × 10−24 A m2)

\(\xi\) :

Langevin parameter

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Electrical conductivity (s m−1)

\(\phi\) :

Particles volume fraction

\({\text{f}}\) :

Base fluid

\({\text{nf}}\) :

Nanofluid

\({\text{p}}\) :

Particle

References

  1. Chingulpitak S, Wongwises S. Effects of coil diameter and pitch on the flow characteristics of alternative refrigerants flowing through adiabatic helical capillary tubes. Int Commun Heat Mass Transf. 2010;37(9):1305–11.

    Article  CAS  Google Scholar 

  2. Chingulpitak S, Wongwises S. A comparison of flow characteristics of refrigerants flowing through adiabatic straight and helical capillary tubes. Int Commun Heat Mass Transf. 2011;38(3):398–404.

    Article  CAS  Google Scholar 

  3. Zhao Z, Wang X, Che D, Cao Z. Numerical studies on flow and heat transfer in membrane helical-coil heat exchanger and membrane serpentine-tube heat exchanger. Int Commun Heat Mass Transf. 2011;38(9):1189–94.

    Article  CAS  Google Scholar 

  4. Dravid AN, Smith K, Merrill E, Brian P. Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes. AIChE J. 1971;17(5):1114–22.

    Article  CAS  Google Scholar 

  5. Kubair V, Kuloor N. Heat transfer to Newtonian fluids in coiled pipes in laminar flow. Int J Heat Mass Transf. 1966;9(1):63–75.

    Article  CAS  Google Scholar 

  6. Patankar SV, Pratap VS, Spalding DB. Prediction of laminar flow and heat transfer in helically coiled pipes. In: Numerical prediction of flow, heat transfer, turbulence and combustion. Amsterdam: Elsevier; 1983. p. 117–29.

  7. Xin R, Ebadian M. The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes. J Heat Transf. 1997;119(3):467–73.

    Article  CAS  Google Scholar 

  8. El-Genk MS, Schriener TM. A review and correlations for convection heat transfer and pressure losses in toroidal and helically coiled tubes. Heat Transf Eng. 2017;38(5):447–74. https://doi.org/10.1080/01457632.2016.1194693.

    Article  CAS  Google Scholar 

  9. Jamshidi N, Farhadi M, Ganji DD, Sedighi K. Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers. Appl Therm Eng. 2013;51(1):644–52.

    Article  Google Scholar 

  10. Kurnia JC, Sasmito AP, Mujumdar AS. Thermal performance of coiled square tubes at large temperature differences for heat exchanger application. Heat Transf Eng. 2016;37(16):1341–56. https://doi.org/10.1080/01457632.2015.1136141.

    Article  CAS  Google Scholar 

  11. Promthaisong P, Jedsadaratanachai W, Eiamsa-ard S. Numerical simulation and optimization of enhanced heat transfer in helical oval tubes: effect of helical oval tube modification, pitch ratio, and depth ratio. Heat Transf Eng. 2017. https://doi.org/10.1080/01457632.2017.1384281.

    Article  Google Scholar 

  12. Huminic G, Huminic A. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. Int J Heat Mass Transf. 2011;54(19):4280–7.

    Article  CAS  Google Scholar 

  13. Huminic G, Huminic A. Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers. Int Commun Heat Mass Transf. 2016;71:118–25.

    Article  CAS  Google Scholar 

  14. Jamshidi N, Farhadi M, Sedighi K, Ganji DD. Optimization of design parameters for nanofluids flowing inside helical coils. Int Commun Heat Mass Transf. 2012;39(2):311–7.

    Article  CAS  Google Scholar 

  15. Karami M, Akhavan-Behabadi MA, Fakoor-Pakdaman M. Heat transfer and pressure drop characteristics of nanofluid flows inside corrugated tubes. Heat Transf Eng. 2016;37(1):106–14. https://doi.org/10.1080/01457632.2015.1042347.

    Article  CAS  Google Scholar 

  16. Bhanvase BA, Sayankar SD, Kapre A, Fule PJ, Sonawane SH. Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl Therm Eng. 2018;128:134–40. https://doi.org/10.1016/j.applthermaleng.2017.09.009.

    Article  CAS  Google Scholar 

  17. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;124(2):827–38. https://doi.org/10.1007/s10973-015-5113-z.

    Article  CAS  Google Scholar 

  18. Marin CN, Malaescu I, Fannin PC. Theoretical evaluation of the heating rate of ferrofluids. J Therm Anal Calorim. 2015;119(2):1199–203. https://doi.org/10.1007/s10973-014-4224-2.

    Article  CAS  Google Scholar 

  19. Khairul MA, Doroodchi E, Azizian R, Moghtaderi B. Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energy Convers Manag. 2017;149:660–74. https://doi.org/10.1016/j.enconman.2017.07.064.

    Article  CAS  Google Scholar 

  20. Abbasi Z, Molaei Dehkordi A, Abbasi F. Numerical investigation of effects of uniform magnetic field on heat transfer around a sphere. Int J Heat Mass Transf. 2017;114:703–14. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.087.

    Article  CAS  Google Scholar 

  21. Rahman MM, Mojumder S, Saha S, Joarder AH, Saidur R, Naim AG. Numerical and statistical analysis on unsteady magnetohydrodynamic convection in a semi-circular enclosure filled with ferrofluid. Int J Heat Mass Transf. 2015;89:1316–30. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.021.

    Article  CAS  Google Scholar 

  22. Shafiei Dizaji A, Mohammadpourfard M, Aminfar H. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field. J Magn Magn Mater. 2018;449:185–96. https://doi.org/10.1016/j.jmmm.2017.10.010.

    Article  CAS  Google Scholar 

  23. Jafari A, Tynjälä T, Mousavi SM, Sarkomaa P. CFD simulation and evaluation of controllable parameters effect on thermomagnetic convection in ferrofluids using Taguchi technique. Comput Fluids. 2008;37(10):1344–53. https://doi.org/10.1016/j.compfluid.2007.12.003.

    Article  CAS  Google Scholar 

  24. Ghadiri M, Sardarabadi M, Pasandideh-fard M, Moghadam AJ. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag. 2015;103:468–76. https://doi.org/10.1016/j.enconman.2015.06.077.

    Article  CAS  Google Scholar 

  25. Sadeghinezhad E, Mehrali M, Akhiani AR, Tahan Latibari S, Dolatshahi-Pirouz A, Metselaar HSC, et al. Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field. Appl Therm Eng. 2017;114:415–27. https://doi.org/10.1016/j.applthermaleng.2016.11.199.

    Article  CAS  Google Scholar 

  26. Fadaei F, Molaei Dehkordi A, Shahrokhi M, Abbasi Z. Convective-heat transfer of magnetic-sensitive nanofluids in the presence of rotating magnetic field. Appl Therm Eng. 2017;116:329–43. https://doi.org/10.1016/j.applthermaleng.2017.01.072.

    Article  CAS  Google Scholar 

  27. Bahiraei M, Hangi M. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Convers Manag. 2013;76:1125–33. https://doi.org/10.1016/j.enconman.2013.09.008.

    Article  CAS  Google Scholar 

  28. Mokhtari M, Hariri S, Barzegar Gerdroodbary M, Yeganeh R. Effect of non-uniform magnetic field on heat transfer of swirling ferrofluid flow inside tube with twisted tapes. Chem Eng Process. 2017;117:70–9. https://doi.org/10.1016/j.cep.2017.03.018.

    Article  CAS  Google Scholar 

  29. Yarahmadi M, Moazami Goudarzi H, Shafii MB. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes. Exp Thermal Fluid Sci. 2015;68:601–11. https://doi.org/10.1016/j.expthermflusci.2015.07.002.

    Article  CAS  Google Scholar 

  30. Ahangar Zonouzi S, Khodabandeh R, Safarzadeh H, Aminfar H, Trushkina Y, Mohammadpourfard M, et al. Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field. Exp Thermal Fluid Sci. 2018;91:155–65. https://doi.org/10.1016/j.expthermflusci.2017.10.013.

    Article  CAS  Google Scholar 

  31. Asfer M, Mehta B, Kumar A, Khandekar S, Panigrahi PK. Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. Int J Heat Fluid Flow. 2016;59:74–86. https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009.

    Article  Google Scholar 

  32. Lajvardi M, Moghimi-Rad J, Hadi I, Gavili A, Dallali Isfahani T, Zabihi F, et al. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J Magn Magn Mater. 2010;322(21):3508–13. https://doi.org/10.1016/j.jmmm.2010.06.054.

    Article  CAS  Google Scholar 

  33. Aminfar H, Mohammadpourfard M, Kahnamouei YN. Numerical study of magnetic field effects on the mixed convection of a magnetic nanofluid in a curved tube. Int J Mech Sci. 2014;78:81–90. https://doi.org/10.1016/j.ijmecsci.2013.10.014.

    Article  Google Scholar 

  34. Selimefendigil F, Öztop HF, Chamkha AJ. Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall. Eur J Mech B/Fluids. 2017;61:77–85.

    Article  Google Scholar 

  35. Selimefendigil F, Öztop HF. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.101.

    Article  CAS  Google Scholar 

  36. Selimefendigil F, Öztop HF. Numerical study of natural convection in a ferrofluid-filled corrugated cavity with internal heat generation. J Heat Transf. 2016;138(12):122501.

    Article  CAS  Google Scholar 

  37. Selimefendigil F, Öztop HF. Modeling and optimization of MHD mixed convection in a lid-driven trapezoidal cavity filled with alumina–water nanofluid: effects of electrical conductivity models. Int J Mech Sci. 2018;136:264–78.

    Article  Google Scholar 

  38. Selimefendigil F, Öztop HF. Forced convection of ferrofluids in a vented cavity with a rotating cylinder. Int J Therm Sci. 2014;86:258–75.

    Article  CAS  Google Scholar 

  39. Selimefendigil F, Öztop HF. Estimation of the mixed convection heat transfer of a rotating cylinder in a vented cavity subjected to nanofluid by using generalized neural networks. Numer Heat Transf Part A Appl. 2014;65(2):165–85. https://doi.org/10.1080/10407782.2013.826109.

    Article  CAS  Google Scholar 

  40. Selimefendigil F, Öztop HF. Effect of a rotating cylinder in forced convection of ferrofluid over a backward facing step. Int J Heat Mass Transf. 2014;71:142–8. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.042.

    Article  Google Scholar 

  41. Selimefendigil F, Öztop HF. Analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation. Int J Mech Sci. 2016;118:113–24. https://doi.org/10.1016/j.ijmecsci.2016.09.011.

    Article  Google Scholar 

  42. Selimefendigil F, Öztop HF, Abu-Hamdeh N. Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2–water nanofluids: effect of nanoparticle shape. Int Commun Heat Mass Transf. 2016;71:9–19. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.007.

    Article  CAS  Google Scholar 

  43. Ito H. Friction factors for turbulent flow in curved pipes. Trans ASME J Basic Eng D. 1959;81:123–34.

    Article  Google Scholar 

  44. Aminfar H, Mohammadpourfard M, Mohseni F. Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields. J Magn Magn Mater. 2012;324(5):830–42.

    Article  CAS  Google Scholar 

  45. Rosensweig RE. Ferrohydrodynamics. North Chelmsford: Courier Corporation; 2013.

    Google Scholar 

  46. Shercliff JA. A textbook of magnetohydrodynamics. Applied electricity and electronics division-The Commonwealth and international library. Oxford: Pergamon Press; 1965.

    Google Scholar 

  47. Tzirtzilakis E. A mathematical model for blood flow in magnetic field. Phys Fluids. 2005;17(7):077103.

    Article  CAS  Google Scholar 

  48. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  49. Hamilton RL, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  50. Mahmoudi AH, Pop I, Shahi M, Talebi F. MHD natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid. Comput Fluids. 2013;72:46–62.

    Article  CAS  Google Scholar 

  51. Aminfar H, Mohammadpourfard M, Kahnamouei YN. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model. J Magn Magn Mater. 2011;323(15):1963–72.

    Article  CAS  Google Scholar 

  52. Bilen K, Yapici J, Celik C. A Taguchi approach for investigation of heat transfer from a surface equipped with rectangular blocks. Energ Convers Manag. 2001;42:10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jamshidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Jamshidi, N. & Rabienataj-Darzi, A.A. Numerical investigation of the magnetic field effect on the heat transfer and fluid flow of ferrofluid inside helical tube. J Therm Anal Calorim 137, 1591–1601 (2019). https://doi.org/10.1007/s10973-019-08066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08066-2

Keywords

Navigation