Skip to main content
Log in

Weakly nonlinear wave propagation in nanorods embedded in an elastic medium using nonlocal elasticity theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the present research, the nonlocal elasticity theory is utilized with the aim of examining nonlinear wave propagation in nanorods, which are embedded in an elastic medium. Constitutive equations on the basis of Eringen’s nonlocal elasticity theory are used in the formulations. Equations of motion are written in terms of material coordinates, and nonlinear equations of nanorods are obtained according to nonlocal elasticity theory. In the study, the rod material is treated as a single-walled carbon nanotube. With the solution of the field equation by the reductive perturbation method, the Korteweg–de Vries (KdV) equation is acquired as the evolution equation, which is governed by the nanorod in an elastic medium. The solitary wave solution of the KdV equation characterizing the motion of carbon nanorods in the elastic medium is given depending on the nonlocal parameter and the parameter of the stiffness of the elastic medium, and it is demonstrated how the nonlocal parameter and the stiffness parameter affect the wave profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    MathSciNet  MATH  Google Scholar 

  3. Eringen AC (1967) Theory of micropolar plates. Z Angew Math Phys 18:12–30

    Google Scholar 

  4. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    MATH  Google Scholar 

  5. Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95:1–4

    Google Scholar 

  6. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3–5):305–312

    Google Scholar 

  7. Reddy JNN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2–8):288–307

    MATH  Google Scholar 

  8. Ece MC, ve Aydoğdu M (2007) Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech 190:185–195

    MATH  Google Scholar 

  9. Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E Low Dimens Syst Nanostruct 42:1727–1735

    Google Scholar 

  10. Thai H-T, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54:58–66

    MathSciNet  MATH  Google Scholar 

  11. Aydogdu M (2012) Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech Res Commun 43:34–40

    Google Scholar 

  12. Yaylı MO, Yanık F, Kandemir SY (2015) Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. Micro Nano Lett 10:641–644

    Google Scholar 

  13. Romano G, Barretta R, Diaco M (2017) On nonlocal integral models for elastic nano-beams. Int J Mech Sci 131:490–499

    Google Scholar 

  14. Yoon J, Ru CQ, Mioduchowski A (2005) Vibration and instability of carbon nanotubes conveying fuid. Compos Sci Technol 65(9):1326–1336

    Google Scholar 

  15. Wang L (2011) A modifed nonlocal beam model for vibration and stability of nanotubes conveying fluid. Physica E 44(1):25–28

    Google Scholar 

  16. Pashaki PV, Ji J-C (2020) Nonlocal nonlinear vibration of an embedded carbon nanotube conveying viscous fluid by introducing a modified variational iteration method. J Braz Soc Mech Sci Eng 42:174

    Google Scholar 

  17. Yoon J, Ru CQ, Mioduchowski A (2003) Vibration of an embedded multiwall carbon nanotube. Compos Sci Technol 63(11):1533–1542

    Google Scholar 

  18. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Google Scholar 

  19. Wang Q, Zhou GY, Lin KC (2006) Scale effect on wave propagation of double-walled carbon nanotubes. Int J Solids Struct 43:6071–6084

    MATH  Google Scholar 

  20. Wu XF, Dzenis YA (2006) Wave propagation in nanofibers. J Appl Phys 100:124318

    Google Scholar 

  21. Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16:178–190

    Google Scholar 

  22. Narendar S, Gopalakrishnan S (2009) Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes. Comput Mater Sci 47:526–538

    Google Scholar 

  23. Selim MM (2011) Dispersion of dilatation wave propagation in single-wall carbon nanotubes using nonlocal scale effects. J Nanopart Res 13(3):1229–1235

    Google Scholar 

  24. Aydogdu M (2012) Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int J Eng Sci 56:17–28

    MathSciNet  Google Scholar 

  25. Aydogdu M (2014) Longitudinal wave propagation in multiwalled carbon nanotubes. Compos Struct 107:578–584

    Google Scholar 

  26. Lim CW, Yang Y (2010) Wave propagation in carbon nanotubes: nonlocal elasticity-induced stiffness and velocity enhancement effects. J Mech Mater Struct 5:459–476

    Google Scholar 

  27. Silling SA (2016) Solitary waves in a peridynamic elastic solid. J Mech Phys Solids 96:121–132

    MathSciNet  Google Scholar 

  28. Cho H, Yu MF, Vakakis AF, Bergman LA, McFarland DM (2010) Tunable, broadband nonlinear nanomechanical resonator. Nano Lett 10:1793–1798

    Google Scholar 

  29. Ansari R, Hemmatnezhad M, Rezapour J (2011) The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions. Curr Appl Phys 11:692–697

    Google Scholar 

  30. Fang B, Zhen YX, Zhang CP, Tang Y (2013) Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl Math Model 37:1096–1107

    MathSciNet  MATH  Google Scholar 

  31. Fu YM, Hong JW, Wang XQ (2006) Analysis of nonlinear vibration for embedded carbon nanotubes. J Sound Vib 296:746–756

    Google Scholar 

  32. Soltani P, Ganji DD, Mehdipour I, Farshidianfar A (2012) Nonlinear vibration and rippling instability for embedded carbon nanotubes. J Mech Sci Technol 26:985–992

    Google Scholar 

  33. Yan Y, Wang W, Zhang I (2011) Applied multiscale method to analysis of nonlinear vibration for double-walled carbon nanotubes. Appl Math Model 35:2279–2289

    MathSciNet  MATH  Google Scholar 

  34. Erbe A, Krömmer H, Kraus Blick RH, Corso G, Richter K (2000) Mechanical mixing in nonlinear nanomechanical resonators. Appl Phys Lett 77:3102–3104

    Google Scholar 

  35. Gaygusuzoglu G, Aydogdu M, Gul U (2018) Nonlinear wave modulation in nanorods using nonlocal elasticity theory. Int J Nonlinear Sci Simul 19(7–8):709–719

    MathSciNet  MATH  Google Scholar 

  36. Gaygusuzoglu G (2018) Nonlinear wave modulation in nanorods by using multiple-scale formalism. Int J Eng Appl Sci (IJEAS) 10(3):140–158

    Google Scholar 

  37. Murmu T, Pradhan SC (2009) Small-scale effect on the vibration on the nonuniform nanocantiliver based on nonlocal elasticity theory. Physica E 41:1451–1456

    Google Scholar 

  38. Rahmani O, Pedram O (2014) Analysis and modelling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70

    MATH  Google Scholar 

  39. Senthilkumar V, Pradhan SC, Pratap G (2010) Small-scale effect on buckling analysis of carbon nanotube with Timoshenko theory by using differential transform method. Adv Sci Lett 3:1–7

    Google Scholar 

  40. Eringen AC (1983) Interaction of dislocation with a crack. J Appl Phys 24:6811–6817

    Google Scholar 

  41. Malvern LE (1969) Introduction to the mechanics of a continuum medium. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  42. Mousavi SM, Fariborz SJ (2012) Free vibration of a rod undergoing finite strain. J Phys Conf Ser 382(1):012011

    Google Scholar 

  43. Aydogdu M (2009) Axial vibration of the nanorods with the nonlocal continuum rod model. Phys E Low Dimens Syst Nanostruct 41(5):861–864

    Google Scholar 

  44. Jeffrey A, Kawahara T (1982) Asymptotic methods in nonlinear wave theory. Pitman, Boston

    MATH  Google Scholar 

  45. Jeffrey A (1979) Some aspects of the mathematical modeling of long nonlinear waves. Arch Mech 31:559–574

    MATH  Google Scholar 

  46. Gaygusuzoglu G (2019) Propagation of weakly nonlinear waves in nanorods using nonlocal elasticity theory. J BAUN Inst Sci Technol 21(1):190–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guler Gaygusuzoglu.

Additional information

Technical Editor: José Roberto de França Arruda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaygusuzoglu, G., Akdal, S. Weakly nonlinear wave propagation in nanorods embedded in an elastic medium using nonlocal elasticity theory. J Braz. Soc. Mech. Sci. Eng. 42, 564 (2020). https://doi.org/10.1007/s40430-020-02648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02648-0

Keywords

Navigation