Skip to main content
Log in

Vibration analysis of cantilever FG-CNTRC trapezoidal plates

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a numerical solution is presented for free vibration analysis of cantilever functionally graded carbon nanotube-reinforced trapezoidal plates. The plate is modeled based on the first-order shear deformation theory, effective mechanical properties are estimated according to extended rule of mixture, and the set of governing equations and boundary conditions are derived using Hamilton’s principle. Generalized differential quadrature method is employed, and natural frequencies and corresponding mode shapes are derived numerically. Convergence and accuracy of the solution are confirmed, and effect of various parameters on the natural frequencies is investigated including geometrical characteristics, volume fraction and distribution of carbon nanotubes. Because of similarity of the studied model with the wing, tail and fin of aircrafts and missiles, results of this paper can be useful in design and analysis of aeronautic vehicles in the near future. It is worth mentioning that results of this paper may serve as benchmarks for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  2. Afshari H, Torabi K (2017) A Parametric study on flutter analysis of cantilevered trapezoidal FG sandwich plates. AUT J Mech Eng 1:191–210

    Google Scholar 

  3. Torabi K, Afshari H (2016) Optimization for flutter boundaries of cantilevered trapezoidal thick plates. J Braz Soc Mech Sci Eng 39:1545–1561

    Google Scholar 

  4. Torabi K, Afshari H (2016) Generalized differential quadrature method for vibration analysis of cantilever trapezoidal FG thick plate. J Solid Mech 8:184–203

    Google Scholar 

  5. Torabi K, Afshari H (2017) Optimization of flutter boundaries of cantilevered trapezoidal functionally graded sandwich plates. J Sandwich Struct Mater 21:503–531

    Google Scholar 

  6. Torabi K, Afshari H (2017) Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness. Eng Solid Mech 5:71–92

    Google Scholar 

  7. Torabi K, Afshari H, Aboutalebi FH (2019) Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. J Sandwich Struct Mater 21:109963621772874

    Google Scholar 

  8. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460

    Google Scholar 

  9. Zhang LW, Lei ZX, Liew KM (2015) Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Compos Struct 120:189–199

    Google Scholar 

  10. Zhang LW, Lei ZX, Liew KM (2015) Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos Struct 122:172–183

    Google Scholar 

  11. Zhang LW, Zhang Y, Zou GL, Liew KM (2016) Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Compos Struct 149:247–260

    Google Scholar 

  12. Lei ZX, Zhang LW, Liew KM (2016) Vibration of FG-CNT reinforced composite thick quadrilateral plates resting on Pasternak foundations. Eng Anal Boundary Elem 64:1–11

    MathSciNet  MATH  Google Scholar 

  13. García-Macías E, Castro-Triguero R, Saavedra Flores EI, Friswell MI, Gallego R (2016) Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Compos Struct 140:473–490

    Google Scholar 

  14. Lei ZX, Zhang LW, Liew KM (2015) Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos Struct 127:245–259

    Google Scholar 

  15. Guo XY, Zhang W (2016) Nonlinear vibrations of a reinforced composite plate with carbon nanotubes. Compos Struct 135:96–108

    Google Scholar 

  16. Selim BA, Zhang LW, Liew KM (2016) Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy’s higher-order shear deformation theory. Compos Struct 156:276–290

    Google Scholar 

  17. Zhang LW, Cui WC, Liew KM (2015) Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. Int J Mech Sci 103:9–21

    Google Scholar 

  18. Zhang LW, Selim BA (2017) Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy’s higher-order shear deformation theory. Compos Struct 160:689–705

    Google Scholar 

  19. Kiani Y (2016) Free vibration of FG-CNT reinforced composite skew plates. Aerosp Sci Technol 58:178–188

    Google Scholar 

  20. Kiani Y (2016) Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers. Comput Math Appl 72:2433–2449

    MathSciNet  MATH  Google Scholar 

  21. Memar Ardestani M, Zhang LW, Liew KM (2017) Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates. Comput Methods Appl Mech Eng 317:341–379

    MathSciNet  Google Scholar 

  22. Nejati M, Asanjarani A, Dimitri R, Tornabene F (2017) Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes. Int J Mech Sci 130:383–398

    Google Scholar 

  23. Fantuzzi N, Tornabene F, Bacciocchi M, Dimitri R (2017) Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Compos B Eng 115:384–408

    Google Scholar 

  24. Wang Q, Qin B, Shi D, Liang Q (2017) A semi-analytical method for vibration analysis of functionally graded carbon nanotube reinforced composite doubly-curved panels and shells of revolution. Compos Struct 174:87–109

    Google Scholar 

  25. Wang Q, Cui X, Qin B, Liang Q (2017) Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions. Compos Struct 182:364–379

    Google Scholar 

  26. Ansari R, Torabi J, Shakouri AH (2017) Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy. Aerosp Sci Technol 60:152–161

    Google Scholar 

  27. Wang M, Li ZM, Qiao P (2018) Vibration analysis of sandwich plates with carbon nanotube-reinforced composite face-sheets. Compos Struct 200:799–809

    Google Scholar 

  28. Zhong R, Wang Q, Tang J, Shuai C, Qin B (2018) Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos Struct 194:49–67

    Google Scholar 

  29. Ansari M, Kumar A, Fic S, Barnat-Hunek D (2018) Flexural and free vibration analysis of CNT-reinforced functionally graded plate. Materials 11:2387

    Google Scholar 

  30. Ansari R, Torabi J, Hassani R (2019) A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates. Eng Struct 181:653–669

    Google Scholar 

  31. Ghorbanpour Arani A, Kiani F, Afshari H (2019) Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels. J Sandw Struct Mater. https://doi.org/10.1177/1099636219830787

    Article  Google Scholar 

  32. Ghorbanpour Arani A, Kiani F, Afshari H (2019) Aeroelastic Analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow. Int J Appl Mech 11:1950052

    Google Scholar 

  33. Zhao J, Choe K, Shuai C, Wang A, Wang Q (2019) Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions. Compos B Eng 160:225–240

    Google Scholar 

  34. Nguyen TN, Thai CH, Luu AT, Nguyen-Xuan H, Lee J (2019) NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells. Comput Methods Appl Mech Eng 347:983–1003

    MathSciNet  Google Scholar 

  35. Mohammadimehr M, Monajemi A, Afshari H (2017) Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams. Microsyst Technol 23:1–15

    Google Scholar 

  36. Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91(1):9–19

    Google Scholar 

  37. Mindlin RD (1951) Influence of rotary inertia and shear on flexural motion of isotropic elastic 37 plates’. J Appl Mech Trans Asme 18:31–38

    MATH  Google Scholar 

  38. Zare Jouneghani F, Dimitri R, Bacciocchi M, Tornabene F (2017) Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory. Appl Sci 7:1252

    Google Scholar 

  39. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  40. Reddy JN (2017) Energy principles and variational methods in applied mechanics. Wiley, Hoboken

    Google Scholar 

  41. Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34:235–238

    MathSciNet  MATH  Google Scholar 

  42. Tornabene F, Fantuzzi N, Ubertini F, Viola E (2015) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev 67:020801

    Google Scholar 

  43. Karami B, Janghorban M, Dimitri R, Tornabene F (2019) Free vibration analysis of triclinic nanobeams based on the differential quadrature method. Appl Sci 9:3517

    Google Scholar 

  44. Torabi K, Afshari H, Aboutalebi FH (2014) A DQEM for transverse vibration analysis of multiple cracked non-uniform Timoshenko beams with general boundary conditions. Comput Math Appl 67:527–541

    MathSciNet  MATH  Google Scholar 

  45. Afshari H, Rahaghi MI (2018) Whirling analysis of multi-span multi-stepped rotating shafts. J Braz Soc Mech Sci Eng 40:424

    Google Scholar 

  46. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1

    Google Scholar 

  47. Du H, Lim MK, Lin RM (1994) Application of generalized differential quadrature method to structural problems. Int J Numer Meth Eng 37:1881–1896

    MathSciNet  MATH  Google Scholar 

  48. Liew KM, Xiang Y, Kitipornchai S, Wang C (1998) Vibration of Mindlin plates: programming the p-version Ritz method. Elsevier, Amsterdam

    MATH  Google Scholar 

  49. Romero G, Alvarez L, Alanı́s E, Nallim L, Grossi R (2003) Study of a vibrating plate: comparison between experimental (ESPI) and analytical results. Opt Lasers Eng 40:81–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azadi.

Additional information

Technical Editor: Thiago Ritto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ \begin{array}{*{20}l} {S_{11} = A_{11} \frac{{\partial^{2} }}{{\partial x^{2} }} + A_{66} \frac{{\partial^{2} }}{{\partial y^{2} }} - I_{0} \frac{{\partial^{2} }}{{\partial t^{2} }}} \hfill & {S_{12} = \left( {A_{12} + A_{66} } \right)\frac{{\partial^{2} }}{\partial x\partial y}} \hfill & {S_{13} = 0} \hfill \\ {S_{14} = B_{11} \frac{{\partial^{2} }}{{\partial x^{2} }} + B_{66} \frac{{\partial^{2} }}{{\partial y^{2} }} - I_{1} \frac{{\partial^{2} }}{{\partial t^{2} }}} \hfill & {S_{15} = \left( {B_{12} + B_{66} } \right)\frac{{\partial^{2} }}{\partial x\partial y}} \hfill & {S_{22} = A_{66} \frac{{\partial^{2} }}{{\partial x^{2} }} + A_{22} \frac{{\partial^{2} }}{{\partial y^{2} }} - I_{0} \frac{{\partial^{2} }}{{\partial t^{2} }}} \hfill \\ {S_{23} = 0} \hfill & {S_{24} = \left( {B_{12} + B_{66} } \right)\frac{{\partial^{2} }}{\partial x\partial y}} \hfill & {S_{25} = B_{66} \frac{{\partial^{2} }}{{\partial x^{2} }} + B_{22} \frac{{\partial^{2} }}{{\partial y^{2} }} - I_{1} \frac{{\partial^{2} }}{{\partial t^{2} }}} \hfill \\ {S_{33} = - A_{55} \frac{{\partial^{2} }}{{\partial x^{2} }} - A_{44} \frac{{\partial^{2} }}{{\partial y^{2} }} + I_{0} \frac{{\partial^{2} }}{{\partial t^{2} }}} \hfill & {S_{34} = - A_{55} \frac{\partial }{\partial x}} \hfill & {S_{35} = - A_{44} \frac{\partial }{\partial y}} \hfill \\ {S_{44} = D_{11} \frac{{\partial^{2} }}{{\partial x^{2} }} + D_{66} \frac{{\partial^{2} }}{{\partial y^{2} }} - A_{55} - I_{2} \frac{{\partial^{2} }}{{\partial t^{2} }}} \hfill & {S_{45} = \left( {D_{12} + D_{66} } \right)\frac{{\partial^{2} }}{\partial x\partial y}} \hfill & {S_{55} = D_{66} \frac{{\partial^{2} }}{{\partial x^{2} }} + D_{22} \frac{{\partial^{2} }}{{\partial y^{2} }} - A_{44} - I_{2} \frac{{\partial^{2} }}{{\partial t^{2} }}} \hfill \\ \end{array} $$
(42)

Appendix 2

$$ \begin{array}{*{20}l} {P_{11} = \left( {n_{x}^{2} A_{11} + n_{y}^{2} A_{12} } \right)\left( {} \right)_{,x} + 2n_{x} n_{y} A_{66} \left( {} \right)_{,y} } \hfill & {P_{21} = n_{x} n_{y} \left( {A_{12} - A_{11} } \right)\left( {} \right)_{,x} + \left( {n_{x}^{2} - n_{y}^{2} } \right)A_{66} \left( {} \right)_{,y} } \hfill \\ {P_{12} = 2n_{x} n_{y} A_{66} \left( {} \right)_{,x} + \left( {n_{x}^{2} A_{12} + n_{y}^{2} A_{22} } \right)\left( {} \right)_{,y} } \hfill & {P_{22} = \left( {n_{x}^{2} - n_{y}^{2} } \right)A_{66} \left( {} \right)_{,x} + n_{x} n_{y} \left( {A_{22} - A_{12} } \right)\left( {} \right)_{,y} } \hfill \\ {P_{13} = 0} \hfill & {P_{23} = 0} \hfill \\ {P_{14} = \left( {n_{x}^{2} B_{11} + n_{y}^{2} B_{12} } \right)\left( {} \right)_{,x} + 2n_{x} n_{y} B_{66} \left( {} \right)_{,y} } \hfill & {P_{24} = n_{x} n_{y} \left( {B_{12} - B_{11} } \right)\left( {} \right)_{,x} + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} \left( {} \right)_{,y} } \hfill \\ {P_{15} = 2n_{x} n_{y} B_{66} \left( {} \right)_{,x} + \left( {n_{x}^{2} B_{12} + n_{y}^{2} B_{22} } \right)\left( {} \right)_{,y} } \hfill & {P_{25} = \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} \left( {} \right)_{,x} + n_{x} n_{y} \left( {B_{22} - B_{12} } \right)\left( {} \right)_{,y} } \hfill \\ {P_{31} = \left( {n_{x}^{2} B_{11} + n_{y}^{2} B_{12} } \right)\left( {} \right)_{,x} + 2n_{x} n_{y} B_{66} \left( {} \right)_{,y} } \hfill & {P_{41} = n_{x} n_{y} \left( {B_{12} - B_{11} } \right)\left( {} \right)_{,x} + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} \left( {} \right)_{,y} } \hfill \\ {P_{32} = 2n_{x} n_{y} B_{66} \left( {} \right)_{,x} + \left( {n_{x}^{2} B_{12} + n_{y}^{2} B_{22} } \right)\left( {} \right)_{,y} } \hfill & {P_{42} = \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} \left( {} \right)_{,x} + n_{x} n_{y} \left( {B_{22} - B_{12} } \right)\left( {} \right)_{,y} } \hfill \\ {P_{33} = 0} \hfill & {P_{43} = 0} \hfill \\ {P_{34} = \left( {n_{x}^{2} D_{11} + n_{y}^{2} D_{12} } \right)\left( {} \right)_{,x} + 2n_{x} n_{y} D_{66} \left( {} \right)_{,y} } \hfill & {P_{44} = n_{x} n_{y} \left( {D_{12} - D_{11} } \right)\left( {} \right)_{,x} + \left( {n_{x}^{2} - n_{y}^{2} } \right)D_{66} \left( {} \right)_{,y} } \hfill \\ {P_{35} = 2n_{x} n_{y} D_{66} \left( {} \right)_{,x} + \left( {n_{x}^{2} D_{12} + n_{y}^{2} D_{22} } \right)\left( {} \right)_{,y} } \hfill & {P_{45} = \left( {n_{x}^{2} - n_{y}^{2} } \right)D_{66} \left( {} \right)_{,x} + n_{x} n_{y} \left( {D_{22} - D_{12} } \right)\left( {} \right)_{,y} } \hfill \\ {P_{51} = 0\quad P_{52} = 0\quad P_{53} = n_{x} A_{55} \left( {} \right)_{,x} + n_{y} A_{44} \left( {} \right)_{,y} } \hfill & {P_{54} = n_{x} A_{55} \left( {} \right)_{,x} \quad P_{55} = n_{y} A_{44} \left( {} \right)_{,y} } \hfill \\ \end{array} $$
(43)

Appendix 3

$$ \begin{aligned} R_{11} & = \left( {A_{11} + A_{66} F^{2} } \right)E^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + A_{66} \left( {2FE\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + \frac{{\partial^{2} }}{{\partial \eta^{2} }} + 2GFE^{2} \frac{\partial }{\partial \zeta }} \right) + \varOmega^{2} I_{0} L^{2} \\\\ R_{12} & = \left( {A_{12} + A_{66} } \right)\left( {FE^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + E\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + GE^{2} \frac{\partial }{\partial \zeta }} \right)\quad R_{13} = 0 \\\\ R_{14} & = \left( {B_{11} + B_{66} F^{2} } \right)E^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + B_{66} \left( {2FE\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + \frac{{\partial^{2} }}{{\partial \eta^{2} }} + 2GFE^{2} \frac{\partial }{\partial \zeta }} \right) + \varOmega^{2} I_{1} L^{2} \\\\ R_{15} & = \left( {B_{12} + B_{66} } \right)\left( {FE^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + E\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + GE^{2} \frac{\partial }{\partial \zeta }} \right) \\\\ R_{22} & = \left( {A_{66} + A_{22} F^{2} } \right)E^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + A_{22} \left( {2FE\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + \frac{{\partial^{2} }}{{\partial \eta^{2} }} + 2GFE^{2} \frac{\partial }{\partial \zeta }} \right) + \varOmega^{2} I_{0} L^{2} \\\\ R_{23} & = 0\quad R_{24} = \left( {B_{12} + B_{66} } \right)\left( {FE^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + E\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + GE^{2} \frac{\partial }{\partial \zeta }} \right) \\\\ R_{25} & = \left( {B_{66} + B_{22} F^{2} } \right)E^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + B_{22} \left( {2FE\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + \frac{{\partial^{2} }}{{\partial \eta^{2} }} + 2GFE^{2} \frac{\partial }{\partial \zeta }} \right) + \varOmega^{2} I_{1} L^{2} \\\\ R_{33} & = - \left( {A_{55} + A_{44} F^{2} } \right)E^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} - A_{44} \left( {2FE\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + \frac{{\partial^{2} }}{{\partial \eta^{2} }} + 2GFE^{2} \frac{\partial }{\partial \zeta }} \right) - \varOmega^{2} I_{0} L^{2} \\\\ R_{34} & = - A_{55} LE\frac{\partial }{\partial \zeta }\quad R_{35} = - A_{44} L\left( {FE\frac{\partial }{\partial \zeta } + \frac{\partial }{\partial \eta }} \right) \\\\ R_{44} & = \left( {D_{11} + D_{66} F^{2} } \right)E^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + D_{66} \left( {2FE\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + \frac{{\partial^{2} }}{{\partial \eta^{2} }} + 2GFE^{2} \frac{\partial }{\partial \zeta }} \right) - A_{55} L^{2} + \varOmega^{2} I_{2} L^{2} \\\\ R_{45} & = \left( {D_{12} + D_{66} } \right)\left( {FE^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + E\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + GE^{2} \frac{\partial }{\partial \zeta }} \right) \\\\ R_{55} & = \left( {D_{66} + D_{22} F^{2} } \right)E^{2} \frac{{\partial^{2} }}{{\partial \zeta^{2} }} + D_{22} \left( {2FE\frac{{\partial^{2} }}{\partial \zeta \partial \eta } + \frac{{\partial^{2} }}{{\partial \eta^{2} }} + 2GFE^{2} \frac{\partial }{\partial \zeta }} \right) - A_{44} L^{2} + \varOmega^{2} I_{2} L^{2} \\\\ \end{aligned} $$
(44)

Appendix 4

$$ \begin{aligned} J_{11} & = \left( {n_{x}^{2} A_{11} + n_{y}^{2} A_{12} + 2n_{x} n_{y} A_{66} F} \right)E\left( {} \right)_{,\zeta } + 2n_{x} n_{y} A_{66} \left( {} \right)_{,\eta } \\ J_{12} & = \left[ {\left( {n_{x}^{2} A_{12} + n_{y}^{2} A_{22} } \right)F + 2n_{x} n_{y} A_{66} } \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} A_{12} + n_{y}^{2} A_{22} } \right)\left( {} \right)_{,\eta } \\ J_{13} & = 0 \\ J_{14} & = \left( {n_{x}^{2} B_{11} + n_{y}^{2} B_{12} + 2n_{x} n_{y} B_{66} F} \right)E\left( {} \right)_{,\zeta } + 2n_{x} n_{y} B_{66} \left( {} \right)_{,\eta } \\ J_{15} & = \left[ {\left( {n_{x}^{2} B_{12} + n_{y}^{2} B_{22} } \right)F + 2n_{x} n_{y} B_{66} } \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} B_{12} + n_{y}^{2} B_{22} } \right)\left( {} \right)_{,\eta } \\ J_{21} & = \left[ {n_{x} n_{y} \left( {A_{12} - A_{11} } \right) + \left( {n_{x}^{2} - n_{y}^{2} } \right)A_{66} F} \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} - n_{y}^{2} } \right)A_{66} \left( {} \right)_{,\eta } \\ J_{22} & = \left[ {n_{x} n_{y} \left( {A_{22} - A_{12} } \right)F + \left( {n_{x}^{2} - n_{y}^{2} } \right)A_{66} } \right]E\left( {} \right)_{,\zeta } + n_{x} n_{y} \left( {A_{22} - A_{12} } \right)\left( {} \right)_{,\eta } \\ J_{23} & = 0 \\ J_{24} & = \left[ {n_{x} n_{y} \left( {B_{12} - B_{11} } \right) + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} F} \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} \left( {} \right)_{,\eta } \\ J_{25} & = \left[ {n_{x} n_{y} \left( {B_{22} - B_{12} } \right)F + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} } \right]E\left( {} \right)_{,\zeta } + n_{x} n_{y} \left( {B_{22} - B_{12} } \right)\left( {} \right)_{,\eta } \\ J_{31} & = \left( {n_{x}^{2} B_{11} + n_{y}^{2} B_{12} + 2n_{x} n_{y} B_{66} F} \right)E\left( {} \right)_{,\zeta } + 2n_{x} n_{y} B_{66} \left( {} \right)_{,\eta } \\ J_{32} & = \left[ {\left( {n_{x}^{2} B_{12} + n_{y}^{2} B_{22} } \right)F + 2n_{x} n_{y} B_{66} } \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} B_{12} + n_{y}^{2} B_{22} } \right)\left( {} \right)_{,\eta } \\ J_{33} & = 0 \\ J_{34} & = \left( {n_{x}^{2} D_{11} + n_{y}^{2} D_{12} + 2n_{x} n_{y} D_{66} F} \right)E\left( {} \right)_{,\zeta } + 2n_{x} n_{y} D_{66} \left( {} \right)_{,\eta } \\ J_{35} & = \left[ {\left( {n_{x}^{2} D_{12} + n_{y}^{2} D_{22} } \right)F + 2n_{x} n_{y} D_{66} } \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} D_{12} + n_{y}^{2} D_{22} } \right)\left( {} \right)_{,\eta } \\ J_{41} & = \left[ {n_{x} n_{y} \left( {B_{12} - B_{11} } \right) + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} F} \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} \left( {} \right)_{,\eta } \\ J_{42} & = \left[ {n_{x} n_{y} \left( {B_{22} - B_{12} } \right)F + \left( {n_{x}^{2} - n_{y}^{2} } \right)B_{66} } \right]E\left( {} \right)_{,\zeta } + n_{x} n_{y} \left( {B_{22} - B_{12} } \right)\left( {} \right)_{,\eta } \\ J_{43} & = 0 \\ J_{44} & = \left[ {n_{x} n_{y} \left( {D_{12} - D_{11} } \right) + \left( {n_{x}^{2} - n_{y}^{2} } \right)D_{66} F} \right]E\left( {} \right)_{,\zeta } + \left( {n_{x}^{2} - n_{y}^{2} } \right)D_{66} \left( {} \right)_{,\eta } \\ J_{45} & = \left[ {n_{x} n_{y} \left( {D_{22} - D_{12} } \right)F + \left( {n_{x}^{2} - n_{y}^{2} } \right)D_{66} } \right]E\left( {} \right)_{,\zeta } + n_{x} n_{y} \left( {D_{22} - D_{12} } \right)\left( {} \right)_{,\eta } \\ J_{51} & = 0\quad J_{52} = 0\quad J_{53} = \left( {n_{x} A_{55} + n_{y} A_{44} F} \right)E\left( {} \right)_{,\zeta } + n_{y} A_{44} \left( {} \right)_{,\eta } \quad J_{54} = n_{x} A_{55} L\quad J_{55} = n_{y} A_{44} L \\ \left( {} \right)_{,\zeta } & = \frac{\partial }{\partial \zeta }\left( {} \right)_{,\eta } = \frac{\partial }{\partial \eta }C \\ \end{aligned} $$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, M.H., Azadi, M. & Fahham, H. Vibration analysis of cantilever FG-CNTRC trapezoidal plates. J Braz. Soc. Mech. Sci. Eng. 42, 118 (2020). https://doi.org/10.1007/s40430-019-2151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-2151-7

Keywords

Navigation