Skip to main content
Log in

Evaluation of double-layer weld deposition technique on ASTM A182 F22 steel without post-weld heat treatment

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present work evaluates the mechanical and metallurgical behavior of ASTM A182 F22 steel heat-affected zone (HAZ) through the double-layer weld deposition technique, with different welding energies between the first and second layers. This methodology leads to the reduction of hardness levels in the HAZ and can exempt the need for post-weld heat treatment on low-alloy steel after buttering welding. The welding was performed by the automated GMAW process in flat position. As the filler metal, the AWS ER309L, ER 80S-G and ER NiCrMo-3 (Inconel 625) alloys were applied on ASTM A182 F22 steel. The analysis of the refining and/or tempering in coarse-grained HAZ (CGHAZ) of the first layer was performed by metallographic tests and microhardness measurements. The tempering of the first-layer CGHAZ is dependent on the correct overlap of the weld layers, weld bead geometry and the highest imposed heat of the second layer. The results revealed that the Higuchi technique is effective for obtaining welding parameters for the second-layer deposition that promotes thermal treating of the hard region of the first-layer HAZ. However, this technique was not able to reduce the hardness values at the 250 HV level required by NACE 0175 for the test conditions in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tsay LW, Lin WL, Cheng SW, Leu GS (1997) Hydrogen sulphide stress corrosion cracking of 2.25Cr-Mo steel weldments. Corros Sci G B 39(7):1165–1176. https://doi.org/10.1016/s0010-938x(97)00015-2

    Article  Google Scholar 

  2. Parameswaran P, Paul VT, Vijayalakshmi M, Raghunathan VS (2004) Microstructural evolution in a single pass autogenously welded 2.25Cr–1Mo steel. Trans Indian Inst Met J Nucl Mater Indian 58(3):253–264

    Google Scholar 

  3. Thomson RC, Miller MK (1998) Carbide precipitation in martensite during the early stages of tempering Cr- and Mo-containing low alloy steels. Acta Mater 46(6):2203–2213. https://doi.org/10.1016/s1359-6454(97)00420-5

    Article  Google Scholar 

  4. Peddle BE, Pickles CA (2000) Carbide and hardness development in the heat affected zone of tempered and postweld heat-treated 2.25Cr–1Mo steel weldments. J Mater Eng Perform USA 9(5):477–488. https://doi.org/10.1361/105994900770345593

    Article  Google Scholar 

  5. Miranda RM, Fortes MA (1989) Austenite grain growth, microstructure and hardness in the heat-affected zone of a 2.25 Cr- 1Mo steel. Mater Sci Eng. https://doi.org/10.1016/0921-5093(89)90399-7

    Article  Google Scholar 

  6. Parvathavarthini N, Saroja S, Dayal RK, Khatak HS (2001) Studies on hydrogen permeability of 2.25Cr–1Mo ferritic steel: correlation with microstructure. J Nucl Mater G B. https://doi.org/10.1016/s0022-3115(00)00706-6

    Article  Google Scholar 

  7. Irving B (1995) The challenge of welding heat treatable alloy steels. Weld J 74(2):43–48

    Google Scholar 

  8. Graville BA (1976) Cold cracking in welds in HSLA steels. Welding of HSLA (microalloyed) structural steels. In: Proceedings of international conference. American Society for Metals

  9. ASTM A182 (2005) Standard specification for forged or rolled alloy and stainless steel pipe flanges, forged fittings, and valves and parts for high-temperature service. West Conshohocken. https://doi.org/10.1520/a0182_a0182m-14a

  10. Dupont JN, Kusko CS (2007) Technical note: martensite formation in austenitic/ferritic dissimilar alloy welds. Weld J 86:983–989

    Google Scholar 

  11. Olden V, Kvaale PE, Simense PA, Aaldstedt S, Solberg JK (2003) The effect of PWHT on the materials properties and microstructure in Inconel 625 and Inconel 725 buttered joints. OMAE 2003. Paper No. 37196. OMAE, Cancun, Mexico. https://doi.org/10.1115/omae2003-37196

  12. Dodge MF, Dong HB, Milititski M, Barnett RP, Gittos MF (2013) Environment-induced cracking in weld joints in subsea oil and gas systems –part II. In: 32nd international conference on ocean, offshore and arctic engineering, 2013, Nantes, France. https://doi.org/10.1115/omae2013-10339

  13. Nino CE, Correa JA, Buschinelli AJA (1992) Técnicas de reparo por soldagem em aços 5Cr–0,5Mo. Sold Mater 4(2):28–33 in Portuguese

    Google Scholar 

  14. Teixeira JCG, Pope AM (1992) Técnica de Deposição em Dupla-Camada para Reparo e Modificações e Tratamento Térmico Pós-Soldagem de Aço 1Cr–0,5Mo. Soldagem e Materiais 4(2):23–27

    Google Scholar 

  15. Niño CE, Buschinelli AJA (1995) Análise de alternativas de reparo por soldagem de aços Cr–Mo. In: XXI Encontro Nacional de Tecnologia de Soldagem, Caxias do Sul, Brazil, 1995, in Portuguese. https://doi.org/10.26678/abcm.cobef2017.cof2017-0066

  16. Bueno ER (1999) Desenvolvimento do Procedimento de Soldagem do AISI 4140 sem Tratamento Térmico Posterior. Dissertation. University of Federal de Santa Catarina

  17. Henke SL, Niño CE, Buschinelli AJA (2000) Soldagem dissimilar do aço CA-6NM sem tratamento térmico posterior. Soldagem & Materiais, São Paulo, vol 6, no 1, p 1–9

  18. Lant T, Robinson DL, Spafford B, Storesund J (2001) Review of weld repair procedures for low alloy steels designed to minimize the risk of future cracking. Int J Press Vessels Pip 78:813–818. https://doi.org/10.1016/s0308-0161(01)00094-1

    Article  Google Scholar 

  19. Higuchi M, Sakamoto H, Tanioka S (1980) A study on weld repair through half bead method. IHI Eng Rev 13:14–19

    Google Scholar 

  20. Dupont JN, Banovic SW, Marder AR (2003) Microstructural evolution and weldability of dissimilar welds between a super austenitic stainless steel and nickel based alloys. Weld J 82(6):125–156. https://doi.org/10.1179/136217102225006804

    Article  Google Scholar 

  21. DODGE MF (2014) The effect of heat treatment on the embrittlement of dissimilar welded joints. 228 f. Thesis Doctor—University of Leicester

  22. Aloraier A, Ibrahim R, Thomsom P (2006) FCAW process to avoid the use of post weld heat treatment. Int J Press Vessels Pip 2006(83):394–398. https://doi.org/10.1016/j.ijpvp.2006.02.028

    Article  Google Scholar 

  23. Aloraier A, Ibrahim RN, Ghojel J (2004) Eliminating post-weld heat treatment in repair welding by temper bead technique: role bead sequence in metallurgical changes. J Mater Process Technol 153–154:392–400. https://doi.org/10.1016/j.jmatprotec.2004.04.383

    Article  Google Scholar 

  24. Silva CC, Albuquerque VHC, Moura CRO, Aguiar WM, Farias JP (2009) Evaluation of AISI 4140 steel repair without post-weld heat treatment. J Mater Eng Perfor UK 18(3):324–331. https://doi.org/10.1007/s11665-008-9294-5

    Article  Google Scholar 

  25. Cavalcante NE, Andrade TC, Pinheiro PHM, Miranda HC, Motta MF, Aguiar WM (2016) Estudo de Procedimentos de Soldagem MIG/MAG para Aplicação de Revestimentos de Liga de Níquel Inconel 625 em Aço Estrutural ASTM A387 Gr.11. Soldagem Inspeção São Paulo 21(1):70–82. https://doi.org/10.1590/0104-9224/si2101.07

    Article  Google Scholar 

  26. Hodgson DK, Dai T, Lippold JC (2015) Transformation and tempering behavior of the heat-affected zone of 2.25Cr–1Mo steel. Weld J Miami 94:250–256

    Google Scholar 

  27. Garcia DN (2018) Mechanical and metallurgical behavior of steel welded joint ASTM A182 F22 Applied in the Offshore Industry. 2018. 209 f. Thesis Doctor—, Federal University of Uberlandia

  28. Alexandrov BT, Lippold JC, Sowards JW, Hope AT, Saltzmann DR (2012) Fusion boundary microstructure evolution associated with embrittlement of Ni–base alloy overlays applied to carbon steel. Weld World Paris 57(1):39–53. https://doi.org/10.1007/s40194-012-0007-1

    Article  Google Scholar 

  29. Fenske JA (2010) Microstructure and hydrogen induced failure mechanisms in iron nickel weldments. 163 f. Thesis Doctor—University of Illinois, Urbana

  30. Da Mota CAM, Nascimento AS, Garcia DN, Silva DAS, Teixeira FR, Ferraresi VA (2017) Revestimento de Níquel Depositado pela Soldagem MIG e MIG com Arame Frio. Revista Soldagem e Inspeção 21:483–496. https://doi.org/10.1590/0104-9224/si2104.08

    Article  Google Scholar 

  31. Teixeira FR, Da Mota CAM, De Almeida HAL, Scotti A (2019) Operational behavior of the switchback GMAW process using a mechanized rig for arc movement. J Mater Process Technol 269:135–149. https://doi.org/10.1016/j.jmatprotec.2019.02.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to institutions that supported this work as FAPEMIG, UFU and UFPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Neves Garcia.

Additional information

Technical Editor: Lincoln Cardoso Brandão.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, D.N., Ferraresi, V.A. & da Mota, C.A.M. Evaluation of double-layer weld deposition technique on ASTM A182 F22 steel without post-weld heat treatment. J Braz. Soc. Mech. Sci. Eng. 41, 313 (2019). https://doi.org/10.1007/s40430-019-1802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1802-z

Keywords

Navigation