Skip to main content
Log in

A computational framework for the constitutive modeling of nonlinear micropolar media

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Despite the large number of applications with micropolar models, the aspects of their implementation have been rarely addressed in the literature. In the present paper, a strategy for the computational modeling of micropolar media with elasto-plasticity and elastic degradation is investigated. The proposed strategy is based on the Object-Oriented Paradigm (OOP) and on the use of tensor objects. The presence of tensor objects inside the code allows to obtain a constitutive models framework that, with respect to existent implementations, is independent on both the adopted analysis model and numerical method. The OOP, with its properties of abstraction, inheritance, and polymorphism, leads to a framework highly modular and easy to expand. The theoretical basis is a compact tensorial representation for the micropolar equations that makes them formally identical to the ones of the classic continuum theory. This compatibility has been here extended to their computational expressions, making possible to use the same code structure for both the continuum models, taking advantage of existing implementations of classic constitutive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The development code is available at the Git repository http://git.insane.dees.ufmg.br/insane/insane.git.

  2. The approach followed here is the one which Forest and Sievert [53] refer to as single-criterion approach. The same authors point out that in order to obtain two un-coupled rate expressions, it is necessary to adopt at least two loading functions, one dependent on the sole strain tensor and the other on the sole micro-curvature tensor. This situation falls in the case of multidissipative models; despite it could be easily introduced in the framework proposed in this paper, this is not the objective of the present work, which concentrates on the implementation of micropolar monodissipative models.

  3. In the present approach, the same approximation functions are used to discretize both the displacement field and the micro-rotation field of the micropolar medium. From following Eq. 51 it can be seen that, differently from a classic medium, in this case also the approximation functions must be integrated together with their spatial derivatives, hence requiring a larger number of integration points with respect to a classic continuum model. In order to overcome this issue, a possible solution suggested by De Borst [2] is to use a different order of interpolation for the two state variables. For example, in a six-nodes triangular element, a number of integration points equal to three are sufficient if the micro-rotation are linearly interpolated, using their nodal values at only three nodes.

  4. An important issue when dealing with micropolar models is the proper calibration of the additional material parameters. Since the main aim of the paper is about the implementation aspects of the micropolar theory, this issue has not been addressed; in the examples of the present section, the values of the Cosserat’s shear modulus and internal bending length have been simply chosen considering values usually adopted in the literature (see, e.g., [2]). The reader interested on the topic may refer to the existing literature cited by Hassanpour and Heppler [60], which can be complemented with the works by Chang et al. devoted to granular materials [9, 61, 62], and other focused on regular and random composites [10, 17,18,19,20, 63, 64].

  5. The input files for the software INSANE of the simulations presented in this section can be found in [65].

  6. More detailed information on this characteristic of the software can be found in [34].

References

  1. de Borst R, Sluys LJ (1991) Localization in a Cosserat continuum under static and dynamic loading. Comput Methods Appl Mech Eng 90(1–3):805

    Article  Google Scholar 

  2. De Borst R (1991) Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 8(4):317. https://doi.org/10.1108/eb023842

    Article  Google Scholar 

  3. de Borst R (1993) A generalization of j2-flow theory for polar continua. Comput Methods Appl Mech Eng 103:347

    Article  Google Scholar 

  4. Sluys LJ (1992) Wave propagation, localization and dispersion in softening solids. Ph.D. thesis, Technische Universiteit Delft, Delft, The Nederlands

  5. Dietsche A, Steinmann P, Willam K (1993) Micropolar elastoplasticity and its role in localization. Int J Plast 9:813

    Article  Google Scholar 

  6. Iordache MM, Willam K (1998) Localized failure analysis in elastoplastic Cosserat continua. Comput Methods Appl Mech Eng 121(3–4):559

    Article  Google Scholar 

  7. Gori L, Penna SS, Pitangueira RLS (2017) An enhanced tensorial formulation for elastic degradation in micropolar continua. Appl Math Model 41:299. https://doi.org/10.1016/j.apm.2016.08.025

    Article  MathSciNet  Google Scholar 

  8. Gori L, Penna SS, da Silva Pitangueira RL (2018) Discontinuous failure in micropolar elastic-degrading models. Int J Damage Mech 27(10):1482–1515. https://doi.org/10.1177/1056789517731137

    Article  Google Scholar 

  9. Chang CS, Ma L (1991) A micromechanical-based micropolar theory for deformation of granular solids. Int J Solids Struct 28(1):67. https://doi.org/10.1016/0020-7683(91)90048-K

    Article  MATH  Google Scholar 

  10. Suiker ASJ, De Borst R, Chang CS (2001) Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mech 149:161. https://doi.org/10.1007/BF01261670

    Article  MATH  Google Scholar 

  11. Walsh SDC, Tordesillas A (2006) Finite element methods for micropolar models of granular materials. Appl Math Model 30:1043. https://doi.org/10.1016/j.apm.2005.05.016

    Article  MATH  Google Scholar 

  12. Arslan H, Willam KJ (2007) Analytical and geometrical representation of localization in granular material. Acta Mech 194:159

    Article  Google Scholar 

  13. Arslan H, Sture S (2008) Finite element simulation of localization in granular materials by micropolar continuum approach. Comput Geotech. https://doi.org/10.1016/j.compgeo.2007.10.006

    Article  MATH  Google Scholar 

  14. Casolo S (2006) Macroscopic modelling of structured materials: relationship between orthotropic Cosserat continuum and rigid elements. Int J Solids Struct 43(3–4):475. https://doi.org/10.1016/j.ijsolstr.2005.03.037

    Article  MATH  Google Scholar 

  15. Dos Reis F, Ganghoffer JF (2012) Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct 112–113:354. https://doi.org/10.1016/j.compstruc.2012.08.006

    Article  Google Scholar 

  16. Addessi D, De Bellis ML, Sacco E (2013) Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mech Res Commun 54:27. https://doi.org/10.1016/j.mechrescom.2013.09.007

    Article  Google Scholar 

  17. De Bellis ML, Addessi D (2014) A micromechanical approach for the micropolar modeling of heterogeneous periodic media. Fract Struct Integr 8(29):37. https://doi.org/10.1007/s11012-015-0224-y

    Article  Google Scholar 

  18. Trovalusci P, Ostoja-Starzewski M, De Bellis ML, Murrali A (2015) Scale-dependent homogenization of random composites as micropolar continua. Eur J Mech A Solids 49:396. https://doi.org/10.1016/j.euromechsol.2014.08.010

    Article  Google Scholar 

  19. Addessi D, De Bellis ML, Sacco E (2016) A micromechanical approach for the Cosserat modeling of composites. Meccanica 51:569. https://doi.org/10.1007/s11012-015-0224-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Trovalusci P, De Bellis ML, Masiani R (2017) A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos Part B Eng 128:164. https://doi.org/10.1016/j.compositesb.2017.06.015

    Article  Google Scholar 

  21. Trovalusci P, Masiani R (2003) Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int J Solids Struct 40(5):1281. https://doi.org/10.1016/S0020-7683(02)00584-X

    Article  MATH  Google Scholar 

  22. Steinmann P (1995) Theory and numerics of ductile micropolar elastoplastic damage. Int J Numer Methods Eng 38:583

    Article  MathSciNet  Google Scholar 

  23. Addessi D (2014) A 2D Cosserat finite element based on a damage-plastic model for brittle materials. Compute Struct 135:20. https://doi.org/10.1016/j.compstruc.2014.01.003

    Article  Google Scholar 

  24. Xotta G, Beizaee S, Willam KJ (2016) Bifurcation investigation of coupled damage-plasticity models for concrete materials. Comput Methods Appl Mech Eng 298:428

    Article  MathSciNet  Google Scholar 

  25. Carol I, Rizzi E, Willam K (1994) A unified theory of elastic degradation and damage based on a loading surface. Int J Solids Struct 31(20):2835. https://doi.org/10.1016/0020-7683(94)90072-8

    Article  MATH  Google Scholar 

  26. Rizzi E (1995) Sulla localizzazione delle deformazioni in materiali e strutture. Ph.D. thesis, Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Milano, Italy (in italian)

  27. Rizzi E, Carol I, Willam K (1995) Localization analysis of elastic degradation with application to scalar damage. J Eng Mech 121(4):541. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:4(541)

    Article  Google Scholar 

  28. Carol I (1996). In: Mecánica Computacional, vol XVII(4). Solid Mechanics (A)

  29. Carol I, Willam K (1996) Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage. Int J Solids Struct 33(20–22):2939–2957. https://doi.org/10.1016/0020-7683(95)00254-5

    Article  MATH  Google Scholar 

  30. Carol I (1999). In: MECOM 99 (Mendoza Argentina)

  31. Hansen E, Willam K, Carol I (2001). In Proceedings of fracture mechanics of concrete materials—Framcos-4 Conferece. France, Paris

  32. Penna SS (2011) Formulação multipotencial para modelos de degradação elástica: unificação teórica, proposta de novo modelo, implementação computational e modelagem de estruturas de concreto. Ph.D. thesis, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil (in portuguese)

  33. Rizzi E, Carol I (2001) A formulation of anisotropic elastic damage using compact tensor formalism. J Elast 64(2):85. https://doi.org/10.1023/A:1015284701032

    Article  MathSciNet  MATH  Google Scholar 

  34. Gori L, Penna SS, da Silva Pitangueira RL (2017) A computational framework for constitutive modelling. Comput Struct 187:1. https://doi.org/10.1016/j.compstruc.2017.01.012

    Article  Google Scholar 

  35. INSANE Project. https://www.insane.dees.ufmg.br/. Accessed June 2019

  36. Jeremić B, Sture S (1998) Tensor objects in finite element programming. Int J Numer Methods Eng 41(1):113. https://doi.org/10.1002/(SICI)1097-0207(19980115)41:1h113::AID-NME277i3.0.CO;2-4

    Article  MATH  Google Scholar 

  37. Jeremić B, Runesson K, Sture S (1999) Object-oriented approach to hyperelasticity. Eng Comput 15(1):2. https://doi.org/10.1007/s003660050002

    Article  MATH  Google Scholar 

  38. Jeremić B, Yang Z (2002) Template elastic-plastic computations in geomechanics. Int J Numer Anal Methods Geomech 26(14):1407. https://doi.org/10.1002/nag.251

    Article  MATH  Google Scholar 

  39. Peixoto R, Anacleto F, Ribeiro G, Pitangueira R, Penna S (2016) A solution strategy for non-linear implicit BEM formulation using a unified constitutive modelling framework. Eng Anal Bound Elem 64:295. https://doi.org/10.1016/j.enganabound.2015.11.017

    Article  MathSciNet  MATH  Google Scholar 

  40. Monteiro A, Wolenski A, Barros F, Pitangueira R, Penna S (2017) A computational framework for G/XFEM material nonlinear analysis. Adv Eng Softw 114:380. https://doi.org/10.1016/j.advengsoft.2017.08.002

    Article  Google Scholar 

  41. Pinheiro D, Barros F, Pitangueira R, Penna S (2017) High regularity partition of unity for structural physically non-linear analysis. Eng Anal Bound Elem 83:43. https://doi.org/10.1016/j.enganabound.2017.07.004

    Article  MathSciNet  MATH  Google Scholar 

  42. Gori L, Penna S, Pitangueira R (2019) Smoothed point interpolation methods for the regularization of material instabilities in scalar damage models. Int J Numer Methods Eng 117:729–755. https://doi.org/10.1002/nme.5974

    Article  MathSciNet  Google Scholar 

  43. Gori L, Pitangueira RLS, Penna SS, Fuina JS (2015) A generalized elasto-plastic micro-polar constitutive model. Appl Mech Mater 798:505

    Article  Google Scholar 

  44. Eremeyev VA (2005) Acceleration waves in micropolar elastic media. Dokl Phys 50(4):204

    Article  Google Scholar 

  45. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  46. Mazars J, Lemaitre J (1984). In: Shah SP (ed) Application of fracture mechanics to cementitious composites, NATO ASI series, vol 94. Springer, Dordrecht, pp 507–520

  47. Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models—I. Int J Solids Struct Formul 23(7):821. https://doi.org/10.1016/0020-7683(87)90083-7

    Article  MATH  Google Scholar 

  48. Marigo J (1985) Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Eng Fract Mech 21(4):861. https://doi.org/10.1016/0013-7944(85)90093-1

    Article  Google Scholar 

  49. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  50. Mazars J (1984) Application de le mécanique de l’endommagement au comportement non lineaire et à la rupture du béton de structure. Ph.D. thesis, Université Pierre et Marie Curie - Laboratoire de Mécanique et Technologie, Paris, France (in french)

  51. de Borst R, Gutiérrez MA (1999) A unified framework for concrete damage and fracture models including size effects. Int J Fract 95(1–4):261. https://doi.org/10.1023/A:1018664705895

    Article  Google Scholar 

  52. Rahaman M, Deepu S, Roy D, Reddy J (2015) A micropolar cohesive damage model for delamination of composites. Compos Struct 131:425

    Article  Google Scholar 

  53. Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech 160(1–2):71

    Article  Google Scholar 

  54. Alves PD, Barros FB, Pitangueira RLS (2013) An object-oriented approach to the generalized finite element method. Adv Eng Softw 59:1. https://doi.org/10.1016/j.advengsoft.2013.02.001

    Article  Google Scholar 

  55. Malekan M, Barros FB, Pitangueira RLDS, Alves PD (2016) An object-oriented class organization for global-local generalized finite element method. Lat Am J Solids Struct 13:2529. https://doi.org/10.1590/1679-78252832

    Article  Google Scholar 

  56. Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented software. Addison-Wesley Professional computing series. Pearson Education, London

    Google Scholar 

  57. Batoz JL, Dhatt G (1979) Incremental displacement algorithms for nonlinear problems. Int J Numer Methods Eng 14(8):1262. https://doi.org/10.1002/nme.1620140811

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang YB, Shieh MS (1990) Solution method for nonlinear problems with multiple critical points. AIIA J 28(12):2110. https://doi.org/10.2514/3.10529

    Article  Google Scholar 

  59. Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620. https://doi.org/10.1063/1.168744

    Article  Google Scholar 

  60. Hassanpour S, Heppler G (2017) Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Math Mech Solids 22(2):224. https://doi.org/10.1177/1081286515581183

    Article  MathSciNet  MATH  Google Scholar 

  61. Chang CS, Liao CL (1990) Constitutive relation for a particulate medium with the effect of particle rotation. Int J Solids Struct 26(4):437. https://doi.org/10.1016/0020-7683(90)90067-6

    Article  MATH  Google Scholar 

  62. Chang CS, Ma L (1992) Elastic material constants for isotropic granular solids with particle rotation. Int J Solids Struct 29(8):1001. https://doi.org/10.1016/0020-7683(92)90071-Z

    Article  MATH  Google Scholar 

  63. Bigoni D, Drugan WJ (2007) Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J Appl Mech 74:741. https://doi.org/10.1115/1.2711225

    Article  MathSciNet  Google Scholar 

  64. Willoughby N, Parnell WJ, Hazel AL, Abrahams ID (2012) Homogenization methods to approximate the effective response of random fibre-reinforced composites. Int J Solids Struct 49:1421. https://doi.org/10.1016/j.ijsolstr.2012.02.010

    Article  Google Scholar 

  65. Gori L Insane input files of the paper “A computational framework for the constitutive modelling of non-linear micropolar media”. Mendeley Data, v1. https://doi.org/10.17632/bbbtsdps4k.1

  66. Petersson PE (1981) Crack growth and development of fracture zones in plain concrete and similar materials. 28 TVBM-1006, Division of Building Materials, Lund Institute of Technology, Lund, Sweden

  67. Winkler B, Hofstetter G, Lehar H (2004) Application of a constitutive model for concrete to the analysis of a precast segmental tunnel lining. Int J Numer Anal Methods Geomech 28(7–8):797

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Brazilian research agencies CAPES (in Portuguese: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMIG (in Portuguese: Fundação de Amparo à Pesquisa do Estado de Minas Gerais) and CNPq (in Portuguese: Conselho Nacional de Desenvolvimento Científico e Tecnológico - Grant 309515/2017-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lapo Gori.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gori, L., Silva Penna, S. & da Silva Pitangueira, R.L. A computational framework for the constitutive modeling of nonlinear micropolar media. J Braz. Soc. Mech. Sci. Eng. 41, 275 (2019). https://doi.org/10.1007/s40430-019-1779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1779-7

Keywords

Navigation