Skip to main content
Log in

Modeling of delamination in fiber-reinforced composite using high-dimensional model representation-based cohesive zone model

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Prediction of delamination failure is challenging when the researchers try to achieve the task without overburdening the available computational resources. One of the most powerful computational models to predict the crack initiation and propagation is cohesive zone model (CZM), which has become prominent in the crack propagation studies. This paper proposes a novel CZM using high-dimensional model representation (HDMR) to capture the steady-state energy release rate (ERR) of a double-cantilever beam (DCB) under mode I loading. The finite element models are created using HDMR-based load and crack length response functions. Initially, the model is developed for 51-mm crack size DCB specimens, and the developed HDMR-based CZM is then used to predict the ERR variations of 76.2-mm crack size DCB model. Comparisons have been made between the available unidirectional composite (IM7/977-3) experimental data and the numerical results obtained from the 51-mm and 76.2-mm initial crack size DCB specimens. In order to demonstrate the efficiency of the proposed model, the results of the second-order nonlinear regression model using RSM are used for the comparison study. The results show that the proposed method is computationally efficient in capturing the delamination strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Herrmann H, Eik M, Berg V, Puttonen J (2014) Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica 49:1985–2000

    Article  MathSciNet  Google Scholar 

  2. Johnson WS, Mangalgiri PD (1987) Investigation of fiber bridging in double cantilever beam specimens. J Compos Technol Res 9:10–13

    Article  Google Scholar 

  3. Spearing SM, Evans AG (1992) The role of fiber bridging in the delamination resistance of fiber-reinforced composites. Acta Metall Mater 40:2191–2199

    Article  Google Scholar 

  4. Anderson T, Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  5. Sørensen BF, Jacobsen TK (1998) Large-scale bridging in composites: R-curves and bridging laws. Compos A Appl Sci Manuf 29:1443–1451

    Article  Google Scholar 

  6. Shanmugam V, Penmetsa R, Tuegel E, Clay S (2013) Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models. Compos Struct 102:38–60

    Article  Google Scholar 

  7. Arora VK, Bhushan G, Aggarwal ML (2017) Enhancement of fatigue life of multi-leaf spring by parameter optimization using RSM. J Braz Soc Mech Sci Eng 39:1333–1349

    Article  Google Scholar 

  8. Balu AS, Rao BN (2014) Efficient assessment of structural reliability in presence of random and fuzzy uncertainties. J Mech Des 136:051008

    Article  Google Scholar 

  9. Balu AS, Rao BN (2012) High dimensional model representation-based formulations for fuzzy finite element analysis of structures. Finite Elem Anal Des 50:217–230

    Article  Google Scholar 

  10. Rabitz H, Alis ÖF, Shorter J, Shim K (1999) Efficient input-output model representations. Comput Phys Commun 117:11–20

    Article  Google Scholar 

  11. Li G, Rosenthal C, Rabitz H (2001) High dimensional model representations. J Phys Chem A 105(33):7765–7777

    Article  Google Scholar 

  12. Bauer J, Kozubal J, Puła W, Wyjadłowski M (2012) Application of HDMR method to reliability assessment of a single pile subjected to lateral load. Studia Geotechnica et Mechanica 34(3):37–51

    Article  Google Scholar 

  13. Balu AS, Rao BN (2011) Explicit fuzzy analysis of systems with imprecise properties. Int J Mech Mater Des 7:283–289

    Article  Google Scholar 

  14. Naveen BO, Balu AS (2018) HDMR-based model update in structural damage identification. Int J Comput Methods 15(2):1840004–1840014

    MATH  Google Scholar 

  15. Ezzine MC, Amiri A, Tarfaoui M (2018) Experimental and numerical investigation of the fracture behavior of adhesive shear tests single lap joints. J Braz Soc Mech Sci Eng 40:382

    Article  Google Scholar 

  16. Sane AU, Padole PM, Manjunatha CM, Uddanwadiker RV, Jhunjhunwala P (2018) Mixed mode cohesive zone modelling and analysis of adhesively bonded composite T-joint under pull-out load. J Braz Soc Mech Sci Eng 40:167

    Article  Google Scholar 

  17. Panettieri E, Fanteria D, Firrincieli A (2015) Damage initialization techniques for non-sequential FE propagation analysis of delaminations in composite aerospace structures. Meccanica 50:2569–2585

    Article  Google Scholar 

  18. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23:622–636

    Article  MathSciNet  Google Scholar 

  19. Liu G, Zhou D, Ma J, Han Z (2016) Numerical investigation of mixed-mode crack growth in ductile material using elastic–plastic XFEM. J Braz Soc Mech Sci Eng 38:1689–1699

    Article  Google Scholar 

  20. Roesler J, Paulino GH, Park K, Gaedicke C (2007) Concrete fracture prediction using bilinear softening. Cem Concr Compos 29:300–312

    Article  Google Scholar 

  21. Park K, Paulino GH, Roesler JR (2008) Determination of the kink point in the bilinear softening model for concrete. Eng Fract Mech 75:3806–3818

    Article  Google Scholar 

  22. Park K, Paulino GH, Roesler J (2010) Cohesive fracture model for functionally graded fiber reinforced concrete. Cem Concr Res 40:956–965

    Article  Google Scholar 

  23. Jin ZH, Paulino GH, Dodds RH (2003) Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng Fract Mech 70:1885–1912

    Article  Google Scholar 

  24. Rao BN, Kuna M (2008) Interaction integrals for fracture analysis of functionally graded magnetoelectroelastic materials. Int J Fract 153:15–37

    Article  Google Scholar 

  25. Gregory JR, Spearing SM (2004) A fiber bridging model for fatigue delamination in composite materials. Acta Mater 52:5493–5502

    Article  Google Scholar 

  26. Feih S (2006) Development of a user element in ABAQUS for modelling of cohesive laws in composite structures. Riso National Laboratory, Roskilde

    Google Scholar 

  27. Rice J (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  28. Suo Z, Bao G, Fan B (1992) Delamination R-curve phenomena due to damage. J Mech Phys Solids 40:1–16

    Article  Google Scholar 

  29. Balu AS, Rao BN (2013) Confidence bounds on design variables using high-dimensional model representation–based inverse reliability analysis. J Struct Eng 139:985–996

    Article  Google Scholar 

  30. Alış ÖF, Rabitz H (2001) Efficient implementation of high dimensional model representations. J Math Chem 29:127–142

    Article  MathSciNet  Google Scholar 

  31. Wang SW, Levy H, Li G, Rabitz H (1999) Fully equivalent operational models for atmospheric chemical kinetics within global chemistry-transport models. J Geophys Res 104:30417–30426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Balu.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D..

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A

Appendix: A

1.1 Development of HDMR equations using five sample points (n = 5)

Consider the first-order HDMR expression to develop the response surface equations,

$$\tilde{f}\left( {\mathbf{x}} \right) = \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{n} {\upphi_{j} (} } x_{i} )f(c_{1} \ldots ,c_{i - 1} \ldots ,x_{i}^{j} \ldots ,c_{i + 1} \ldots ,c_{N} ) - (N - 1)f_{0}$$

For N = 5 and n = 5: \(\tilde{f}\left( {\mathbf{x}} \right) = \sum\nolimits_{i = 1}^{5} {\sum\nolimits_{j = 1}^{5} {\upphi_{j} (x_{i} )f(c_{1} \ldots ,c_{i - 1} \ldots ,x_{i}^{j} \ldots ,c_{i + 1} \ldots ,c_{N} ) - (N - 1)f_{0} } }\)

The expanded form of the above expression is given as:

$$\begin{aligned} & \tilde{f}\left( {\mathbf{x}} \right) = \sum\limits_{j = 1}^{5} {\upphi_{j} } (x_{1} )f(x_{1}^{j} ,c_{2} ,c_{3} , \ldots ,c_{5} ) + \sum\limits_{j = 1}^{5} {\upphi_{j} } (x_{2} )f(c_{1} ,x_{2}^{j} ,c_{3} , \ldots ,c_{5} ) + \cdots + \sum\limits_{j = 1}^{5} {\upphi_{j} } (x_{5} )f(c_{1} ,c_{2} , \ldots ,x_{5}^{j} ) - (5 - 1)f(c_{1} ,c_{2} , \ldots ,c_{5} ) \\ & {\text{For}}\;i = 1\;{\text{and}}\;j = \;1{-}5 \\ \end{aligned}$$
$$\begin{aligned} & {\text{Expansion of }}1 \\ &\upphi_{1} (x_{1} )f(x_{1}^{1} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{2} (x_{1} )f(x_{1}^{2} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{3} (x_{1} )f(x_{1}^{3} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{4} (x_{1} )f(x_{1}^{4} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) \\ & \quad +\upphi_{5} (x_{1} )f(x_{1}^{5} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) \\ \end{aligned}$$
$$\begin{aligned} & {\text{Similarly}}\;{\text{from}}\;i = 2\;{\text{to}}\; 5\;{\text{and}}\;j = 1{-}5\;{\text{expression}}\;{\text{are}}\;{\text{given}}\;{\text{by}} \\ & {\text{Expansion of }}2 \\ &\upphi_{1} (x_{2} )f(c_{1} ,x_{2}^{1} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{2} (x_{2} )f(c_{1} ,x_{2}^{2} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{3} (x_{2} )f(c_{1} ,x_{2}^{3} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{4} (x_{2} )f(c_{1} ,x_{2}^{4} ,c_{3} ,c_{4} ,c_{5} ) \\ & \quad { + \phi }_{5} (x_{2} )f(c_{1} ,x_{2}^{5} ,c_{3} ,c_{4} ,c_{5} ) \\ \end{aligned}$$
$$\begin{aligned} & {\text{Expansion}}\,{\text{of}}\,3 \\ &\upphi_{1} (x_{3} )f(c_{1} ,c_{2} ,x_{3}^{1} ,c_{4} ,c_{5} ) +\upphi_{2} (x_{3} )f(c_{1} ,c_{2} ,x_{3}^{2} ,c_{4} ,c_{5} ) +\upphi_{3} (x_{3} )f(c_{1} ,c_{2} ,x_{3}^{3} ,c_{4} ,c_{5} ) +\upphi_{4} (x_{3} )f(c_{1} ,c_{2} ,x_{3}^{4} ,c_{4} ,c_{5} ) \\ & \quad + \,\upphi_{5} (x_{3} )f(c_{1} ,c_{2} ,x_{3}^{5} ,c_{4} ,c_{5} ) \\ \end{aligned}$$
$$\begin{aligned} & {\text{Expansion}}\,{\text{of}}\, 4\\ &\upphi_{1} (x_{4} )f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{1} ,c_{5} ) +\upphi_{2} (x_{4} )f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{2} ,c_{5} ) +\upphi_{3} (x_{4} )f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{3} ,c_{5} ) +\upphi_{4} (x_{4} )f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{4} ,c_{5} ) \\ & \quad + \,\upphi_{5} (x_{4} )f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{5} ,c_{5} ) \\ \end{aligned}$$
$$\begin{aligned} & {\text{Expansion}}\,{\text{of}}\, 5\\ &\upphi_{1} (x_{5} )f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{1} ) +\upphi_{2} (x_{5} )f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{2} ) +\upphi_{3} (x_{5} )f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{3} ) +\upphi_{4} (x_{5} )f(c_{1} ,c_{2} ,.c_{3} ,c_{4} ,x_{5}^{4} ) \\ & \quad + \,\upphi_{5} (x_{5} )f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{5} ) \\ \end{aligned}$$

In order to obtain the HDMR expression for the desired response, the functions \(f(c_{1} \ldots ,c_{i - 1} \ldots ,x_{i}^{j} \ldots ,c_{i + 1} \ldots ,c_{N} )\) are evaluated using ABAQUS. Table 7 shows the component functions and corresponding load and crack length values. The responses (load and crack length) for the function evaluations in the above expansion are as below:

Table 7 Cut-HDMR sampling and corresponding FEA results for 51 mm initial crack

The number of function evaluations can be obtained by using Eq. (13).

$$\begin{aligned} & {\text{Function}}\,{\text{Evaluations}}\,{\text{in}}\,{\text{Expansion-1}} \\ & f(x_{1}^{1} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) = f(100, \, 4, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {127.26;} & {0.1522} \\ \end{array} \\ & f(x_{1}^{2} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) = f(250, \, 4, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {171.92;} & {0.1523} \\ \end{array} \\ & f(x_{1}^{3} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) = f(400, \, 4, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {208.67;} & {0.1489} \\ \end{array} \\ & f(x_{1}^{4} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) = f(550, \, 4, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {243.50;} & {0.1440} \\ \end{array} \\ & f(x_{1}^{5} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) = f(700, \, 4, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {275.26;} & {0.1417} \\ \end{array} \\ & {\text{Similarly,}}\;{\text{all}}\;{\text{the}}\;{\text{function}}\;{\text{evaluations}}\;{\text{are}}\;{\text{carried}}\;{\text{out}}\;{\text{up}}\;{\text{to}}\,i = 5\,{\text{and}}\,j = 1{-}5 \\ \end{aligned}$$
$$\begin{aligned} & {\text{Function}}\;{\text{Evaluations}}\;{\text{in}}\;{\text{Expansion-2}} \\ & f(c_{1} ,x_{2}^{1} ,c_{3} ,c_{4} ,c_{5} ) = f(400,{ 1} . 0, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {312.26;} & {0.0940} \\ \end{array} \\ & f(c_{1} ,x_{2}^{2} ,c_{3} ,c_{4} ,c_{5} ) = f(400,{ 2} . 5, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {243.50;} & {0.1252} \\ \end{array} \\ & f(c_{1} ,x_{2}^{3} ,c_{3} ,c_{4} ,c_{5} ) = f(400,{ 4} . 0, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {208.67;} & {0.1489} \\ \end{array} \\ & f(c_{1} ,x_{2}^{4} ,c_{3} ,c_{4} ,c_{5} ) = f(400,{ 5} . 5, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {187.23;} & {0.1680} \\ \end{array} \\ & f(c_{1} ,x_{2}^{5} ,c_{3} ,c_{4} ,c_{5} ) = f(400,{ 7} . 0, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {170.69;} & {0.1860} \\ \end{array} \\ \end{aligned}$$
$$\begin{aligned} & {\text{Function Evaluations in Expansion-3}} \\ & f(c_{1} ,c_{2} ,x_{3}^{1} ,c_{4} ,c_{5} ) = f(400,{ 4}, \, 0.0100, \, 210, \, 8.5) = \begin{array}{*{20}c} {213.36;} & {0.1510} \\ \end{array} \\ & f(c_{1} ,c_{2} ,x_{3}^{2} ,c_{4} ,c_{5} ) = f(400,{ 4}, \, 0.2325, \, 210, \, 8.5) = \begin{array}{*{20}c} {209.41;} & {0.1495} \\ \end{array} \\ & f(c_{1} ,c_{2} ,x_{3}^{3} ,c_{4} ,c_{5} ) = f(400,{ 4}, \, 0.4550, \, 210, \, 8.5) = \begin{array}{*{20}c} {208.67;} & {0.1489} \\ \end{array} \\ & f(c_{1} ,c_{2} ,x_{3}^{4} ,c_{4} ,c_{5} ) = f(400,{ 4}, \, 0.6775, \, 210, \, 8.5) = \begin{array}{*{20}c} {207.25;} & {0.1489} \\ \end{array} \\ & f(c_{1} ,c_{2} ,x_{3}^{5} ,c_{4} ,c_{5} ) = f(400,{ 4}, \, 0.9000, \, 210, \, 8.5) = \begin{array}{*{20}c} {207.37;} & {0.1482} \\ \end{array} \\ \end{aligned}$$
$$\begin{aligned} & {\text{Function Evaluations in Expansion-4}} \\ & f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{1} ,c_{5} ) = f(400,{ 4}, \, 0.455, \, 190, \, 8.5) = \begin{array}{*{20}c} {203.11;} & {0.1515} \\ \end{array} \\ & f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{2} ,c_{5} ) = f(400,{ 4}, \, 0.455, \, 200, \, 8.5) = \begin{array}{*{20}c} {205.43;} & {0.1550} \\ \end{array} \\ & f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{3} ,c_{5} ) = f(400,{ 4}, \, 0.455, \, 210, \, 8.5) = \begin{array}{*{20}c} {208.67;} & {0.1489} \\ \end{array} \\ & f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{4} ,c_{5} ) = f(400,{ 4}, \, 0.455, \, 220, \, 8.5) = \begin{array}{*{20}c} {209.96;} & {0.1487} \\ \end{array} \\ & f(c_{1} ,c_{2} ,c_{3} ,x_{4}^{5} ,c_{5} ) = f(400,{ 4}, \, 0.455, \, 230, \, 8.5) = \begin{array}{*{20}c} {212.37;} & {0.1417} \\ \end{array} \\ \end{aligned}$$
$$\begin{aligned} & {\text{Function Evaluations in Expansion-5}} \\ & f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{1} ) = f(400,{ 4}, \, 0.455, \, 210,{ 0}5.00) = \begin{array}{*{20}c} {207.34;} & {0.1472} \\ \end{array} \\ & f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{2} ) = f(400,{ 4}, \, 0.455, \, 210,{ 0}6.75) = \begin{array}{*{20}c} {209.14;} & {0.1469} \\ \end{array} \\ & f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{3} ) = f(400,{ 4}, \, 0.455, \, 210,{ 0}8.50) = \begin{array}{*{20}c} {208.67;} & {0.1489} \\ \end{array} \\ & f(c_{1} ,c_{2} ,.c_{3} ,c_{4} ,x_{5}^{4} ) = f(400,{ 4}, \, 0.455, \, 210, \, 10.25) = \begin{array}{*{20}c} {209.63;} & {0.1487} \\ \end{array} \\ & f(c_{1} ,c_{2} ,c_{3} ,c_{4} ,x_{5}^{5} ) = f(400,{ 4}, \, 0.455, \, 210, \, 12.00) = \begin{array}{*{20}c} {209.78;} & {0.1495} \\ \end{array} \\ \end{aligned}$$

The shape/interpolation function \(\phi_{j} \left( {x_{i} } \right)\) is evaluated using the Lagrange interpolation:

$$\phi_{j} \left( {x_{i} } \right) = \frac{{\left( {x_{i} - x_{i}^{1} } \right) \ldots \left( {x_{i} - x_{i}^{j - 1} } \right)\left( {x_{i} - x_{i}^{j + 1} } \right) \ldots \left( {x_{i} - x_{i}^{n} } \right)}}{{\left( {x_{i}^{j} - x_{i}^{1} } \right) \ldots \left( {x_{i}^{j} - x_{i}^{j - 1} } \right)\left( {x_{i}^{j} - x_{i}^{j + 1} } \right) \ldots \left( {x_{i}^{j} - x_{i}^{n} } \right)}}$$

Considering the first expansion function, for i = 1 and j = 1–5, the expression of Expansion 1 for load (having 51 mm initial crack) is given by

$$\begin{aligned} {\text{Expansion - 1}} = &\upphi_{1} (x_{1} )f(x_{1}^{1} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{2} (x_{1} )f(x_{1}^{2} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{3} (x_{1} )f(x_{1}^{3} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) \\ & + \,\upphi_{4} (x_{1} )f(x_{1}^{4} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) +\upphi_{5} (x_{1} )f(x_{1}^{5} ,c_{2} ,c_{3} ,c_{4} ,c_{5} ) \\ = & \left( {82.30x_{1}^{4} - 156.37x_{1}^{3} + 106.79x_{1}^{2} - 30.88x_{1} + 3.16} \right)f(100, \, 4, \, 0.455, \, 210, \, 8.5) \\ & + \,\left( { - 329.21x_{2}^{4} + 576x_{2}^{3} - 345.67x_{2}^{2} + 79.83x_{2} - 5.06} \right)f(250, \, 4, \, 0.455, \, 210, \, 8.5) \\ & + \,\left( {493.82x_{3}^{4} - 790.12x_{3}^{3} + 418.51x_{3}^{2} - 81.97x_{3} + 4.75} \right)f(400, \, 4, \, 0.455, \, 210, \, 8.5) \\ & + \,\left( { - 329.21x_{4}^{4} + 477.36x_{4}^{3} - 227.16x_{4}^{2} + 41.31x_{4} - 2.30} \right)f(550, \, 4, \, 0.455, \, 210, \, 8.5) \\ & + \,\left( {82.30x_{5}^{4} - 106.99x_{5}^{3} + 47.53x_{5}^{2} - 8.29x_{5}^{2} + 0.45} \right)f(700, \, 4, \, 0.455, \, 210, \, 8.5) \\ \end{aligned}$$

Similarly, all the five HDMR functions are evaluated, and summation of all gives the HDMR approximation equation for load response \(\left( {Y_{1} } \right)\) as below:

$$\begin{aligned} Y_{1} = &\, 47.5396 - 05877x_{1}^{4} + 1.0598x_{1}^{3} - 0.7370x_{1}^{2} + 0.4673x_{1} + 9.9177 \times 10^{ - 5} x_{2}^{4} - 0.0023x_{2}^{3} + 0.0209x_{2}^{2} - 0.0990x_{2} \\ & + \,0.1035x_{3}^{4} - 0.2012x_{3}^{3} + 0.1341x_{3}^{2} - 0.0403x_{3} + 2.4750 \times 10^{4} x_{4}^{4} - 2.0773 \times 10^{4} x_{4}^{3} + 6.5261 \times 10^{3} x_{4}^{2} - 909.2747x_{4} \\ & - \,2.63389 \times 10^{ - 5} x_{5}^{4} + 9.1993 \times 10^{ - 4} x_{5}^{3} - 0.0117x_{5}^{2} + 0.0645x_{5} \\ \end{aligned}$$

Similarly, the HDMR approximation equations are developed for the crack length of 51 mm, load and crack length of 76.2 mm initial crack, i.e., \(Y_{2} ,Y_{3} {\text{ and }}Y_{4}\).

$$\begin{aligned} Y_{2} = & - 228.5620 + 0.1728x_{1}^{4} - 0.1259x_{1}^{3} - 0.0520x_{1}^{2} + 0.0268x_{1} + 4.9382 \times 10^{ - 6} x_{2}^{4} - 7.9012 \times 10^{ - 5} x_{2}^{3} - 0.0025x_{2}^{2} + 0.0285x_{2} \\ & - \,0.017x_{3}^{4} + 0.0188x_{3}^{3} + 0.0023x_{3}^{2} - 0.0081x_{3} - 1.1750 \times 10^{5} x_{4}^{4} + 9.8933 \times 10^{4} x_{4}^{3} - 3.1196 \times 10^{4} x_{4}^{2} + 4.3659 \times 10^{3} x_{4} \\ & + \,3.4208 \times 10^{ - 5} x_{5}^{4} - 0.0012x_{5}^{3} + 0.0149x_{5}^{2} - 0.0799x_{5} \\ \end{aligned}$$
$$\begin{aligned} Y_{3} = & - 22.0774 - 0.5832x_{1}^{4} + 0.9932x_{1}^{3} - 0.6504x_{1}^{2} + 0.3909x_{1} + 3.2169 \times 10^{ - 4} x_{2}^{4} - 0.0049x_{2}^{3} + 0.0287x_{2}^{2} - 0.0933x_{2} \\ & - \,0.4705x_{3}^{4} + 1.0580x_{3}^{3} - 0.8292x_{3}^{2} + 0.2623x_{3} - 1.1104 \times 10^{4} x_{4}^{4} + 9.4199 \times 10^{3} x_{4}^{3} - 2.9908 \times 10^{3} x_{4}^{2} + 421.3760x_{4} \\ & - \,9.5827 \times 10^{ - 6} x_{5}^{4} + 3.1867 \times 10^{ - 4} x_{5}^{3} - 0.0038x_{5}^{2} + 0.0196x_{5} \\ \end{aligned}$$
$$\begin{aligned} Y_{4} = & 26.4019 + 0.4031x_{1}^{4} - 0.5955x_{1}^{3} + 0.2859x_{1}^{2} - 0.0722x_{1} - 2.8026 \times 10^{ - 4} x_{2}^{4} + 0.0038x_{2}^{3} - 0.0193x_{2}^{2} + 0.0583x_{2} \\ & + \,0.5120x_{3}^{4} - 1.1566x_{3}^{3} + 0.9152x_{3}^{2} - 0.2991x_{3} + 1.3142 \times 10^{4} x_{4}^{4} - 1.1143 \times 10^{4} x_{4}^{3} + 3.5367 \times 10^{3} x_{4}^{2} - 498.0339x_{4} \\ & + \,9.5560 \times 10^{ - 6} x_{5}^{4} - 3.1326 \times 10^{ - 4} x_{5}^{3} + 0.0036x_{5}^{2} - 0.0169x_{5} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesava Rao, B., Balu, A.S. Modeling of delamination in fiber-reinforced composite using high-dimensional model representation-based cohesive zone model. J Braz. Soc. Mech. Sci. Eng. 41, 254 (2019). https://doi.org/10.1007/s40430-019-1761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1761-4

Keywords

Navigation