Skip to main content

Numerical Modeling of DCB Mode 1 Delamination Propagation in Composite Laminates Using Cohesive Zone Model

  • Conference paper
  • First Online:
Advances in Smart Materials and Innovative Buildings Construction Systems (ICATH 2022)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

Included in the following conference series:

  • 115 Accesses

Abstract

In this study, utilizing relatively refined meshes, we present a novel Cohesive Zone Model (CZM) to predict delamination propagation precisely and reliably in composite laminates under static loads. This finite element analysis consists to define elements at the interface between two composite plates and an interface damage law. This analysis was conducted using ABAQUS software, where we employed the guidelines outlined in the ASTM D5528 standard for composite Double Cantilever Beam (DCB) testing to numerically simulate the propagation of delamination under pure mode 1 conditions. We have compared the outcomes of this numerical model with existing literature and engaged in a discussion regarding their validity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. AC09036782 (2007) ASTM D5528-standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM Internat

    Google Scholar 

  • Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50(7):1701–1736. https://doi.org/10.1002/nme.93

    Article  Google Scholar 

  • Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int J Fract 77(2):111–140

    Article  Google Scholar 

  • Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56(4):439–449

    Article  CAS  Google Scholar 

  • Bottega WJ (1983) A growth law for propagation of arbitrary shaped delaminations in layered plates. Int J Solids Struct 19(11):1009–1017

    Article  Google Scholar 

  • Bottega WJ, Maewal A (1983) Delamination buckling and growth in laminates. J Appl Mech Trans ASME 50(1):184–189

    Article  Google Scholar 

  • Bruno D (1988) Delamination buckling in composite laminates with interlaminar defects. Theor Appl Fract Mech 9(2):145–159

    Article  Google Scholar 

  • Bruno D, Greco F (2000) An asymptotic analysis of delamination buckling and growth in layered plates. Int J Solids Struct 37(43):6239–6276

    Article  Google Scholar 

  • Bruno D, Greco F (2001) Delamination in composite plates: influence of shear deformability on interfacial debonding. Cem Concr Compos 23(1):33–45

    Article  CAS  Google Scholar 

  • Bruno D, Grimaldi A (1990) Delamination failure of layered composite plates loaded in compression. Int J Solids Struct 26(3):313–330

    Article  Google Scholar 

  • Chai H, Babcock CD (1985) Two-dimensional modelling of compressive failure in delaminated laminates. J Compos Mater 19(1):67–98

    Article  Google Scholar 

  • Cochelin B, Potier-Ferry M (1991) A numerical model for buckling and growth of delaminations in composite laminates. Comput Methods Appl Mech Eng 89(1–3):361–380

    Article  Google Scholar 

  • Comiez JM, Waas AM, Shahwan KW (1995) Delamination buckling; experiment and analysis. Int J Solids Struct 32(6–7):767–782

    Article  Google Scholar 

  • Elices M, Guinea GV, Gomez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate.

    Google Scholar 

  • Kardomateas GA (1990) Postbuckling characteristics in delaminated kevlar/epoxy laminates: an experimental study. J Compos Technol Res 12(2):85–90

    Article  Google Scholar 

  • Kardomateas GA, Pelegri AA (1994) The stability of delamination growth in compressively loaded composite plates. Int J Fract 65(3):261–276

    Article  Google Scholar 

  • Kardomateas GA (1993) The initial post-buckling and growth behavior of internal delaminations in composite plates.

    Google Scholar 

  • Karimi S, Haji Aboutalebi F, Heidari‐Rarani M (2022) Developments in remeshing‐free fatigue crack growth simulation including a new adaptive virtual crack closure technique. Fatigue Fract. Eng. Mater. Struct. 45(8):2293–2312.

    Google Scholar 

  • Kim H-J (1997) Postbuckling analysis of composite laminates with a delamination. Comput Struct 62(6):975–983

    Article  Google Scholar 

  • Kouchakzadeh MA, Sekine H (2000) Compressive buckling analysis of rectangular composite laminates containing multiple delaminations. Compos Struct 50(3):249–255

    Article  Google Scholar 

  • Larsson P-L (1991) On multiple delamination buckling and growth in composite plates. Int J Solids Struct 27(13):1623–1637

    Article  Google Scholar 

  • Lorriot T, Marion G, Harry R, Wargnier H (2003) Onset of free-edge delamination in composite laminates under tensile loading. Compos Part B Eng 34(5):459–471. https://doi.org/10.1016/S1359-8368(03)00016-7

    Article  CAS  Google Scholar 

  • Lu X, Ridha M, Chen BY, Tan VBC, Tay TE (2019) On cohesive element parameters and delamination modelling. Eng Fract Mech 206:278–296

    Article  Google Scholar 

  • Point N, Sacco E (1996) Delamination of beams: an application to the DCB specimen. Int J Fract 79(3):225–247

    Article  Google Scholar 

  • Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC press

    Google Scholar 

  • Sheinman I, Kardomateas GA, Pelegri AA (1998) Delamination growth during pre-and post-buckling phases of delaminated composite laminates. Int J Solids Struct 35(1–2):19–31

    Article  Google Scholar 

  • Sosa JLC, Karapurath N (2012) Delamination modelling of GLARE using the extended finite element method. Compos Sci Technol 72(7):788–791

    Article  Google Scholar 

  • Storåkers B, Andersson B (1988) Nonlinear plate theory applied to delamination in composites. J Mech Phys Solids 36(6):689–718

    Article  Google Scholar 

  • Whitcomb JD, Shivakumar KN (1989) Strain-energy release rate analysis of plates with postbuckled delaminations. J Compos Mater 23(7):714–734

    Article  Google Scholar 

  • Wisnom MR, Hallett SR (2009) The role of delamination in strength, failure mechanism and hole size effect in open hole tensile tests on quasi-isotropic laminates. Compos Part A Appl Sci Manuf 40(4):335–342. https://doi.org/10.1016/J.COMPOSITESA.2008.12.013

    Article  Google Scholar 

  • Yeh M-K, Fang L-B (1999) Contact analysis and experiment of delaminated cantilever composite beam. Compos Part B Eng 30(4):407–414

    Article  Google Scholar 

  • Yin W-L, Sallam SN, Simitses GJ (1986) Ultimate axial load capacity of a delaminated beam-plate. AIAA J 24(1):123–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Bellahkim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellahkim, M., Ouezgan, A., Achak, N., Maziri, A., Mallil, E.H., Echaabi, J. (2023). Numerical Modeling of DCB Mode 1 Delamination Propagation in Composite Laminates Using Cohesive Zone Model. In: Mosallam, A.S., El Bhiri, B., Karbhari, V.M., Saadeh, S. (eds) Advances in Smart Materials and Innovative Buildings Construction Systems. ICATH 2022. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-031-47428-6_6

Download citation

Publish with us

Policies and ethics