Skip to main content
Log in

Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing processes are being increasingly explored by researchers around the world for a variety of medical applications, such as patient-specific models, implants, prosthetics, orthotics, drug delivery devices and tissue engineering scaffolds. The objective of this study is to obtain patient-specific models and implants from computed tomography (CT) scan data and validate the strength of implant using finite element analysis. For this purpose, CT scan data of two patients were obtained in digital imaging and communication in medicine (DICOM) file format. DICOM files were converted into computer-aided design models using open source image processing software DeVIDE and saved in stereolithography (STL) format. The STL files were cleaned and corrected in Materialise’s Magics RP software. These models were loaded into 3D systems’ Geomagic Freeform software to design the customized implants. Finite element analysis was performed to check the strength of cranium implant. Maximum von Mises stress and deformation were found well below the allowable limit of the material. Finally, physical models of cranium, pelvic bone and implant prototypes, namely cranial, ilium, pubic symphysis and ischium were manufactured in polyamide PA2200 on a selective laser sintering machine. A simulation-based surface roughness evaluation was also performed to assess the range of surface roughness values (Ra) of various implant prototypes. The Ra values for implants were observed between 14.4 and 34.67 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bowers CA, McMullin JH, Brimley C, Etherington L, Siddiqi FA, Riva-Cambrin J (2015) Minimizing bone gaps when using custom pediatric cranial implants is associated with implant success. J Neurosurg Pediatr 16(4):439–444

    Article  Google Scholar 

  2. Tuomi JT, Björkstrand RV, Pernu ML, Salmi MV, Huotilainen EI, Wolff JE, Vallittu PK, Mäkitie AA (2017) In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials. J Mater Sci–Mater Med 28(3):53

    Article  Google Scholar 

  3. Ahn DG, Lee JY, Yang DY (2006) Rapid prototyping and reverse engineering application for orthopedic surgery planning. J Mech Sci Technol 20(01):19–128

    Article  Google Scholar 

  4. Salmi M (2016) Possibilities of preoperative medical models made by 3D printing or additive manufacturing. J Med Eng. https://doi.org/10.1155/2016/6191526

    Article  Google Scholar 

  5. Yap YL, Tan YSE, Tan HKJ, Peh ZK, Low XY, Yeong WY, Tan CSH, Laude A (2017) 3D printed bio-models for medical applications. Rapid Prototyp J 23(2):227–235

    Article  Google Scholar 

  6. Thomas DJ, Azmi MM, Tehrani Z (2014) 3D additive manufacture of oral and maxillofacial surgical models for preoperative planning. Int J Adv Manuf Technol 71(9–12):1643–1651

    Article  Google Scholar 

  7. Jelena M, Miroslav T (2007) Medical applications of rapid prototyping. Facta Univ Ser Mech Eng 5(01):79–85

    Google Scholar 

  8. Berce P, Chezan H and Balc N (2005) The application of rapid prototyping technologies for manufacturing the custom implants. In: Proceedings of the ESAFORM conference in Cluj-Napoca, Romania, pp 679–682

  9. Sanadhya S, Vij N, Chaturvedi P, Tiwari S, Arora B, Modi YK (2015) Medical applications of additive manufacturing. Int J Sci Progress Res 12(1):11–17

    Google Scholar 

  10. Ngan E, Rebeyka I, Ross D et al (2006) The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg 132(02):264–269

    Article  Google Scholar 

  11. Dhakshyani R, Nukman Y, Abu Osman AN, Vijay C (2011) Preliminary report: rapid prototyping models for dysplastic hip surgery. Central Eur J Med 6(03):266–270

    Google Scholar 

  12. Tuomi J, Paloheimo KS, Vehviläinen J, Björkstrand R, Salmi M, Huotilainen E, Kontio R, Rouse S, Gibson I, Mäkitie AA (2014) A novel classification and online platform for planning and documentation of medical applications of additive manufacturing. Surg Innov 21(6):553–559

    Article  Google Scholar 

  13. Negi S, Dhiman S, Sharma RK (2014) Basics and applications of rapid prototyping medical models. Rapid Prototyp J 20(3):256–267

    Article  Google Scholar 

  14. Modi YK, Agrawal S, de Beer DJ (2015) Direct generation of STL files from USGS DEM data for additive manufacturing of terrain models. Virtual Phys Prototyp 10(3):137–148

    Article  Google Scholar 

  15. Agrawal S, de Beer DJ, Modi YK (2014) Conversion of a GIS surface data directly to a 3D STL part for terrain modeling. Rapid Prototyp J 20(5):422–430

    Article  Google Scholar 

  16. Gibson I, Cheung LK, Chow SP et al (2006) The use of rapid prototyping to assist medical applications. Rapid Prototyp J 12(01):53–58

    Article  Google Scholar 

  17. Ma D, Lin F, Chua CK (2001) Rapid prototyping applications in medicine Part 2: STL file generation and case studies. Int J Adv Manuf Technol 18:118–127

    Article  Google Scholar 

  18. Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63(07):1006–1015

    Article  Google Scholar 

  19. Huotilainen E, Paloheimo M, Salmi M, Paloheimo KS, Björkstrand R, Tuomi J, Markkola A, Mäkitie A (2014) Imaging requirements for medical applications of additive manufacturing. Acta Radiol 55(1):78–85

    Article  Google Scholar 

  20. Hieu LC, Zlatov N (2005) Medical rapid prototyping applications and methods. Assem Autom 25(4):284–292

    Article  Google Scholar 

  21. Comaneanu RM, Tarcolea M, Vlasceanu D, Cotrut MC (2012) Virtual 3D reconstruction, diagnosis and surgical planning with Mimics software. Int J Nano Biomater 4(1):69–77

    Article  Google Scholar 

  22. Singare S, Lian Q, Ping Wang W, Wang J, Liu Y, Li D, Lu B (2009) Rapid prototyping assisted surgery planning and custom implant design. Rapid Prototyp J 15(1):19–23

    Article  Google Scholar 

  23. Mishra S (2016) Application of 3D printing in medicine. Indian Heart J 68:108–109

    Article  Google Scholar 

  24. Sherekar RM, Pawar AN (2014) Application of biomodels for surgical planning by using rapid prototyping: a review and case studies. Int J Innov Res Adv Eng 1(6):263–271

    Google Scholar 

  25. Da Rosa EL, Oleskovicz CF, Aragao BN (2004) Rapid prototyping in maxillofacial surgery and traumatology: case report. Braz Dental J 15(03):243–247

    Article  Google Scholar 

  26. Cohen A, Laviv A, Berman P, Nashef R, Abu TJ (2009) Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 108(05):661–666

    Article  Google Scholar 

  27. Bertol LS, Junior WK, Silva FP, Kopp CA (2010) Medical design: direct metal laser sintering of Ti6Al4V. Mater Des 31(08):3982–3988

    Article  Google Scholar 

  28. Ciocca L, Crescenzio FD, Fantini M, Scotti R (2009) CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Gr 33(01):58–62

    Article  Google Scholar 

  29. Robiony M, Costa F, Bazzocchi M, Bandera C, Felice M (2007) Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. J Oral Maxillofac Surg 65(06):1198–1208

    Article  Google Scholar 

  30. Chua CK, Jacob GGK, Mei T (1997) Interface between CAD and rapid prototyping systems Part 1: a study of existing interface. Int J Adv Manuf Technol 13(8):566–570

    Article  Google Scholar 

  31. Chua CK, Jacob GGK, Mei T (1997) Interface between CAD and rapid prototyping systems Part 2: LMI–an improved interface. Int J Adv Manuf Technol 13(8):571–576

    Article  Google Scholar 

  32. Bailey M (2005) Layered manufacturing for scientific visualization. Commun ACM 48(6):42–48

    Article  Google Scholar 

  33. Chandramohan D, Marimuthu K (2011) Rapid prototyping/rapid tooling—a Overview and its applications in orthopaedics. Int J Adv Eng Technol 2(04):435–448

    Google Scholar 

  34. Park JH, Olivares-Navarrete R, Baier RE, Meyer AE, Tannenbaum R, Boyan BD, Schwartz Z (2012) Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater 8(5):1966–1975

    Article  Google Scholar 

  35. Delashaw J, Persing J (1996) Repair of cranial defects. In: Youmans JR (ed) Neurological surgery vol 4, pp 1853–1864

  36. Salmi M, Tuomi J, Paloheimo KS, Björkstrand R, Paloheimo M, Salo J, Kontio R, Mesimäki K, Mäkitie AA (2012) Patient-specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp J 18(3):209–214

    Article  Google Scholar 

  37. Sanan A (1997) Repairing holes in the head: a history of cranioplasty. Neurosurgery 40:588–603

    Google Scholar 

  38. D’Urso P, Earwaker W, Barker T, Redmond M, Thompson R, Effeney D, Tomlinson F (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53:200–204

    Article  Google Scholar 

  39. Saringer W, Nobauer-Huhmann I, Knosp E (2002) Cranioplasty with individual carbon fibre reinforced polymere (CFRP)medical grade implants based on CAD/CAM technique. Acta Neurochir 144:1193–1203

    Article  Google Scholar 

  40. Foustanos AP, Anagnostopoulos D, Kotsianos G, Rapidis AD (1983) Cranioplasty: a review of 10 cases. J Maxillofac Surg 11:83–86

    Article  Google Scholar 

  41. Gladstone HB, McDermott MW, Cooke DD (1995) Implants for cranioplasty. Otolaryngol Clin North Am 28:381–400

    Google Scholar 

  42. Dujovny M, Aviles A, Agner C, Fernandez P, Charbel F (1997) Cranioplasty: cosmetic or therapeutic? Surg Neurol 47:238–241

    Article  Google Scholar 

  43. Girod S, Teschner M, Schrell U, Kevekordes B, Girod B (2001) Computer-aided 3D simulation and prediction of craniofacial surgery: a new approach. J Cranio-Maxillofac Surg 29:156–158

    Article  Google Scholar 

  44. Material data sheet PA2200: EOS GmbH. http://www.shapeways.com/topics/udesign/materials/white_strong_flexible/pa2200_material_data_sheet_12_08_en__.pdf. Accessed on September 14, 2018

  45. Bonda DJ, Manjila S, Selman WR, Dean D (2015) The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions. Neurosurgery 77(5):814–824

    Article  Google Scholar 

  46. E-Foundry, online learning resources in casting design and simulation by IIT Bombay, http://efoundry.iitb.ac.in/Academy/index.jsp

  47. Lacefield William R (2007) Materials characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res 13:21–26

    Article  Google Scholar 

  48. Albrektsson T, Berglundh T, Lindhe J (2003) Osseointegration: historic background and current concepts. In: Clinical periodontology and implant dentistry, 4th ed., Blackwell Munksgaard, Oxford, pp 809–820

Download references

Acknowledgements

Authors gratefully acknowledge the help and support extended by the 3D Systems, USA, by providing access to trial versions of Geomagic Freeform and Geomagic Freeform Plus to design the patient-specific implants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Kumar Modi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Technical Editor: Fernando Antonio Forcellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, Y.K., Sanadhya, S. Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data. J Braz. Soc. Mech. Sci. Eng. 40, 503 (2018). https://doi.org/10.1007/s40430-018-1425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1425-9

Keywords

Navigation