Skip to main content
Log in

Effect of slip and percolation of polar additives of coupled-stress lubricant on the steady-state characteristics of double-layered porous journal bearings

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A theoretical study has been made into the steady-state solution of externally pressurized double-layered porous journal bearings lubricated with coupled-stress fluid with tangential velocity slip at the fine porous interface. The analysis takes into account the tangential velocity slip based on the Beavers–Joseph criterion. Moreover, the present study includes the effects of percolation of the polar additives (microstructures) into the coarse and fine layers of a porous medium. The most general modified Reynolds type equation has been derived for a porous journal bearing lubricated with coupled stress fluids. The governing equations are derived for flow in the coarse and fine layers of the porous medium incorporating the percolation of polar additives of the lubricant. The effects of slip, speed parameter, percolation factor and coupled-stress parameter on the static characteristics in terms of load capacity, attitude angle, side leakage and frictional parameter were investigated. The results are exhibited in the form of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(C\) :

Radial clearance of the bearing

\(D\) :

Diameter of the bearing

\(e\) :

Eccentricity of the bearing

\(\bar{F}_{\text{s}}\) :

Dimensionless total frictional force on the journal surface

\(h\) :

Local film thickness

\(\bar{h}\) :

Dimensionless film thickness (h/C)

\(H\) :

Thickness of the porous bush

\(H_{f} ,H_{c}\) :

Thickness of the fine and coarse layers, respectively

\(k_{xf} ,k_{yf} ,k_{zf}\) :

Permeability coefficient of the fine layer along the x, y, z direction, respectively

\(k_{xc} ,k_{yc} ,k_{zc}\) :

Permeability coefficient of the coarse layer along the x, y, z direction, respectively

\(\bar{K}_{xf} ,\bar{K}_{zf}\) :

Dimensionless permeability coefficient of the fine layer, \(k_{xf} /k_{yf} ,k_{zf} /k_{yf}\), respectively

\(\bar{K}_{xc} ,\bar{K}_{zc}\) :

Dimensionless permeability coefficient of the coarse layer, \(k_{xc} /k_{yc} ,k_{zc} /k_{yc}\), respectively

\(\bar{K}_{yc}\) :

Dimensionless interlayer permeability coefficient, \(k_{yc} /k_{yf}\)

\(l\) :

Characteristic length of additives

\(\bar{l}\) :

Dimensionless characteristic length of additives, \(\bar{l} = l/C\)

\(L\) :

Length of the bearing

\(p_{a}\) :

Ambient pressure

\(p_{s}\) :

Supply pressure

\(\bar{p}_{s}\) :

Dimensionless supply pressure,\(p_{s} /p_{a}\)

\(p\) :

Local film pressure in bearing clearance

\(\bar{p}\) :

Dimensionless local film pressure in bearing clearance, \(p/p_{s}\)

\(p_{f}^{'} ,p_{c}^{'}\) :

Local film pressure in the fine and coarse layers, respectively

\(\bar{p}_{s}^{'} ,\bar{p}_{c}^{'}\) :

Dimensionless local film pressure in the fine and coarse layers,\(p_{f}^{'} /p_{s} , p_{c}^{'} /p_{s}\), respectively

\(Q\) :

Side leakage of lubricant

\(\bar{Q}_{c}\) :

Dimensionless side leakage of lubricant \(Q\mu L/C^{3} Dp_{s}\)

\(R\) :

Radius of journal

\(\bar{W}\) :

Dimensionless total load-carrying capacity

\(\bar{W}_{r} ,\bar{W}_{t}\) :

Dimensionless components of load-carrying capacity

\(x,y,z\) :

Cartesian coordinate axis along circumferential, radial, and axial direction, respectively

\(\theta ,\bar{y},\bar{z}\) :

Dimensionless coordinates, \(\theta = \frac{x}{R} , \bar{y} = \frac{y}{H} ,\bar{z} = \frac{2z}{L}\)

\(\theta_{c}\) :

Angular coordinates at which the film cavitates

\(\gamma_{n}\) :

Percolation factor in the n direction, \(n = x,y,z\)

\(\gamma_{nf} , \gamma_{nc}\) :

Dimensionless percolation factor for the fine and coarse layers, respectively. \(n = x,y,z\)

\(\sigma_{n}\) :

Dimensional permeability factor, \(\sigma_{n} = C/\sqrt {k_{n} }\), n = x, z

\(\mu\) :

Coefficient of classical absolute viscosity of the lubricant

\(\eta\) :

Material constant with the dimension of momentum accounting for the coupled stress

\(\beta\) :

Bearing feeding parameter, \(\beta = 12k_{yf} R^{2} /HC^{3}\)

\(\xi_{n}\) :

Slip function in the n direction, n = x, z

\(\xi_{0x}\) :

Slip function defined by \(\xi_{0x} = 1/1 + \alpha \sigma_{x} \bar{h}\)

\(\chi_{nf} ,\chi_{nc}\) :

Percolation function for the fine and coarse layers in the n direction n = x, z

\(\phi_{0}\) :

Attitude angle

\(\mu_{f}\) :

Coefficient of friction

\(\omega\) :

Angular velocity of journal rotation

\(\varepsilon_{0}\) :

Eccentricity ratio \(\varepsilon_{0} = e/C\)

\(\alpha\) :

Slip coefficient

\(\lambda_{c}\) :

Coarse layer thickness ratio \(H_{C} /H\)

\(\varLambda_{S}\) :

Bearing number \(\varLambda_{S} = 6\mu \omega R^{2} /p_{s} C^{2}\)

References

  1. Durazo-Cardenas IS, Corbett J, Stephenson DJ (2010) The performance of a porous ceramic hydrostatic journal bearing. ProcIMechE Part J J Eng Tribol 224(1):81–89

    Article  Google Scholar 

  2. Cusano C (1979) An analytical study of starved porous bearings. Trans ASME J Lubr Tech 101(1):38–47

    Article  Google Scholar 

  3. Howarth RB (1976) Externally pressurized porous thrust bearings. Trans ASLE 19(4):293–300

    Article  Google Scholar 

  4. Chattopadhyay AK, Majumdar BC (1984) Steady state solution of finite hydrostatic porous oil journal bearings with tangential velocity slip. Tribol Int 17(6):317–323

    Article  Google Scholar 

  5. Chattopadhyay AK, Majumdar BC, Rao NS (1987) Stability of a rigid rotor in finite externally pressurized oil journal bearings with slip. Trans ASME J Tribol 109:301–306

    Article  Google Scholar 

  6. Majumdar BC, Rao NS (1979) On the analytical solution of hydrostatic oil porous journal bearing. Proc Natl Conf Ind Tribol India 1:70–80

    Google Scholar 

  7. Chandra M, Malik M, Sinhasan R (1981) Investigation of slip effects in plane porous journal bearings. Wear 73:61–72

    Article  Google Scholar 

  8. Heinzl J (1982) Aerostatisches Lager. German Patent De 31 10712 A1, Munich

  9. Okano M (1991) Studies of externally pressurized porous gas bearings. Res Electrotech Lab 952:1–145

    Google Scholar 

  10. Saha N, Majumdar BC (2003) Stability of oil-lubricated externally pressurized two-layered porous journal bearings: a non-linear transient analysis. J Eng Tribol IMECHE 217:223–228

    Article  Google Scholar 

  11. Saha N, Majumdar BC (2004) Steady state and stability characteristics of hydrostatic two layered porous oil journal bearings. J Eng Tribol IMECHE 218:99–108

    Article  Google Scholar 

  12. Kumar MP, Samanta P, Murmu NC (2015) Investigation of velocity slip effect on steady state characteristics of finite hydrostatic double-layered porous oil journal bearing. ProcIMechE Part J J Eng Tribol 229(7):773–784

    Article  Google Scholar 

  13. Stokes VK (1966) Couple-stresses in fluids. Phy Fluids 9:1709–1715

    Article  Google Scholar 

  14. Ariman TT, Sylvester ND (1973) Micro continuum fluid mechanics-a review. Int J Eng Sci 11:905–930

    Article  MATH  Google Scholar 

  15. Ariman TT, Sylvester ND (1974) Application of micro continuum fluid mechanics. Int J Eng Sci 12:273–293

    Article  MATH  Google Scholar 

  16. Guha SK (2004) A theoretical analysis of dynamic characteristics of finite hydrodynamic journal bearings lubricated with coupled stress fluids. Proc Inst Mech Eng Part J J Eng Tribol 218:1–9

    Article  Google Scholar 

  17. Srivastava LM (1986) Peristaltic transport of a couple-stress fluid. Rheol Acta 25:638–641

    Article  Google Scholar 

  18. Shehawey EFEi and Mekheimer KhS (1994) Couple-stresses in peristaltic transport of fluids. J Phys D 27:1163–1170

    Article  Google Scholar 

  19. Bujurke NM, Jayaraman G (1982) The influence of couple stresses in squeeze films. Int J Mech Sci 24:369–376

    Article  MATH  Google Scholar 

  20. Lin JR (1996) Couple-stress effects on the squeeze film characteristics of hemispherical bearings with reference to synovial joints. Int J Appl Mech Eng 1:317–332

    MATH  Google Scholar 

  21. Naduvinamani NB, Hiremathand PS, Gurubasavaraj G (2001) Static and dynamic behaviour of squeeze-film lubrication of narrow porous journal bearings with coupled stress fluid. Proc Inst Mech Eng 215:45–62

    Article  Google Scholar 

  22. Naduvinamani NB, Hiremath PS, Gurubasavaraj G (2001) Squeeze film lubrication of a short porous journal bearing with coupled stress fluids. Tribol Int 34:739–747

    Article  Google Scholar 

  23. Guha SK, Chattopadhyay AK (2007) On the linear stability analysis of finite hydrodynamic porous journal bearing under coupled stress lubrication. J Eng Tribol IMECHE 221:831–840

    Article  Google Scholar 

  24. Guha SK (2010) Linear stability performance analysis of finite hydrostatic porous journal bearings under the coupled stress lubrication with the additives effects into pores. Tribol Int 43:1294–1306

    Article  Google Scholar 

  25. Beavers GS, Joseph DD (1967) Boundary conditions of a naturally permeable wall. J Fluid Mech 30:197–207

    Article  Google Scholar 

  26. Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris

  27. Floberg L (1961) Boundary condition of cavitation regions in journal bearings. ASLE Trans 4:282–286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitendu Some.

Additional information

Technical Editor: Celso Kazuyuki Morooka.

Appendix

Appendix

The summary of the derivation procedure of modified Reynold’s Eq. (5) in the clearance region of porous bearing is as follows.

Slip velocity along the x direction is:

$$U_{S} = U\xi_{0X} - \frac{{h^{2} \xi_{x} }}{{6\mu \left( {1 - \gamma_{xf} } \right)}}\frac{\partial p}{\partial x} + \frac{h}{2\mu }\xi_{0X} \frac{\partial p}{\partial x}2l\tanh \left( {\frac{h}{2l}} \right).$$
(9)

Slip velocity along the z direction is:

$$W_{\text{S}} = - \frac{{h^{2} \xi_{z} }}{{6\mu \left( {1 - \gamma_{zf} } \right)}}\frac{\partial p}{\partial z} + \frac{h}{2\mu }\xi_{0z} \frac{\partial p}{\partial z}2l\tanh \left( {\frac{h}{2l}} \right),$$
(10)

where

$$\xi_{0n} = \frac{{\sqrt {k_{nf} } }}{{\alpha \left( {h + \frac{{\sqrt {k_{nf} } }}{\alpha }} \right)}} \xi_{n} = \frac{{3\sqrt {k_{nf} } \left\{ {2\alpha \sqrt {k_{nf} } + h\left( {1 - \gamma_{nf} } \right)} \right\}}}{{h\alpha \left( {h + \frac{{\sqrt {k_{nf} } }}{\alpha }} \right)}} n = x,z.$$

The velocity component, \(u\left( {x,y} \right)\), along the circumferential direction,

$$\begin{aligned} u\left( {x,y} \right) & = U\left( {\frac{y}{h}} \right) + U\xi_{0X} \left( {1 - \frac{y}{h}} \right) - \frac{{h^{2} \xi_{x} }}{{6\mu \left( {1 - \gamma_{xf} } \right)}}\frac{\partial p}{\partial x}\left( {1 - \frac{y}{h}} \right) \\ & \quad \quad \quad \quad + \frac{h}{2\mu }\xi_{0X} \frac{\partial p}{\partial x}2l\tanh \left( {\frac{h}{2l}} \right)\left( {1 - \frac{y}{h}} \right) \\ & \quad \quad \quad \quad + \frac{1}{2\mu }\frac{\partial p}{\partial x}\left[ {y\left( {y - h} \right) + 2l^{2} \left\{ {1 - \frac{{\cosh \left( {\frac{2y - h}{2l}} \right)}}{{\cosh \left( {\frac{h}{2l}} \right)}}} \right\}} \right]. \\ \end{aligned}$$
(11)

The velocity component, \(w\left( {z,y} \right)\), along the axial direction,

$$w\left( {z,y} \right) = - \frac{{h^{2} \xi_{z} }}{{6\mu \left( {1 - \gamma_{zf} } \right)}}\frac{\partial p}{\partial z}\left( {1 - \frac{y}{h}} \right) + \frac{h}{2\mu }\xi_{0z} \frac{\partial p}{\partial z}2l\tanh \left( {\frac{h}{2l}} \right)\left( {1 - \frac{y}{h}} \right) + \frac{1}{2\mu }\frac{\partial p}{\partial z}\left[ {y\left( {y - h} \right) + 2l^{2} \left\{ {1 - \frac{{\cosh \left( {\frac{2y - h}{2l}} \right)}}{{\cosh \left( {\frac{h}{2l}} \right)}}} \right\}} \right].$$
(12)

The flow rate \(q_{x}\) in the x direction per unit width of z is given by

$$q_{x} = \mathop \int \limits_{0}^{h} u.{\text{d}}y = \left( {\frac{1}{12\mu }} \right)\left[ {6\mu Uh\left( {1 + \xi_{0X} } \right) - f\left( {h,k_{xf} ,l,\gamma_{xf} } \right)\frac{\partial p}{\partial x}} \right],$$
(13)

where \(f\left( {h,k_{xf} ,l,\gamma_{xf} } \right) = h^{3} \left( {1 + \frac{{\xi_{x} }}{{\left( {1 - \gamma_{xf} } \right)}}} \right) - 6h^{2} \xi_{0X} l\tanh \left( {\frac{h}{2l}} \right) - 12l^{2} \left\{ {h - 2l\tanh \left( {\frac{h}{2l}} \right)} \right\}.\)Similarly,

$$q_{z} = \mathop \int \limits_{0}^{h} w.{\text{d}}y = \left( {\frac{1}{12\mu }} \right)\left[ { - f\left( {h,k_{zf} ,l,\gamma_{zf} } \right)\frac{\partial p}{\partial z}} \right],$$
(14)

where \(f\left( {h,k_{zf} ,l,\gamma_{zf} } \right) = h^{3} \left( {1 + \frac{{\xi_{z} }}{{\left( {1 - \gamma_{zf} } \right)}}} \right) - 6h^{2} \xi_{0z} l\tanh \left( {\frac{h}{2l}} \right) - 12l^{2} \left\{ {h - 2l\tanh \left( {\frac{h}{2l}} \right)} \right\}.\)The flow continuity equation is:

$$\frac{{\partial q_{x} }}{\partial x} + \frac{{\partial q_{z} }}{\partial z} + \left( {v_{h} - v_{0} } \right) = 0.$$
(15)

Here,\(v_{h}\) = velocity of the journal surface at y = h

$$={\text{squeeze\;velocity}}= \frac{\partial h}{\partial t} {\text{(it\;is\;neglected\;in\;steady-state\;analysis)}}.$$

\(v_{0}\) = velocity of fluid (filter velocity) at y = 0,

$$= v^{'} = - \frac{{k_{yf} }}{{\mu \left( {1 - \gamma_{yf} } \right)}}\left. {\frac{{\partial p^{'}_{f} }}{\partial y}} \right|_{y = 0} .$$

Modified Reynold’s Eq. (5) is established with the help of Eqs. (13), (14) and (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Some, S., Guha, S.K. Effect of slip and percolation of polar additives of coupled-stress lubricant on the steady-state characteristics of double-layered porous journal bearings. J Braz. Soc. Mech. Sci. Eng. 40, 68 (2018). https://doi.org/10.1007/s40430-018-1018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1018-7

Keywords

Navigation