Skip to main content
Log in

Piezo-viscous-polar lubrication of hybrid journal bearing under misaligned operation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Polymer based additives with long chain of suspended particles in oil retain polarity effect in the presence of couple stresses. Further, at high speed of journal bearing, the oil film experiences substantial agitation due to pressure-viscosity interaction which evolve piezo-viscous dependency of the lubricant. The present article addresses the combined effects of piezo-viscous dependency and couple stresses of lubricant on the characteristics of multi-recessed hybrid journal bearing under misaligned operation. To govern the flow of piezo-viscous-polar lubricant in clearance space of the journal bearing, a piezo-polar function is used to obtain the modified form of Reynolds equation. Galerkin’s technique is employed to obtain the finite element formulation in the form of algebraic equation, which is solved to determine the unknown pressure field in the bearing system. The present results reveal that the use of piezo-viscous-polar lubricant offers an enhancement in performance characteristics of bearing system, i.e., a significant hike of 13–36%, 27–30% and 7–10% in the values of \(\overline{S}_{ij}\), \(\overline{C}_{ij}\) and \(\overline{\omega }_{th}\) respectively vis-à-vis Newtonian lubricant. The numerically simulated non-dimensional results presented in the article may be useful to generate the bearing design data of the hybrid journal baring system functioning in realistic and stringent operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(a_{b}\) :

Land width (mm)

\(c\) :

Radial clearance (mm)

\(h\) :

Oil film thickness (mm)

\(l_{cs}\) :

Couple stress parameter

\(p\) :

Pressure (N/mm2)

\(p_{s}\) :

Supply pressure (N/mm2)

\(t\) :

Time (s)

\(L\) :

Bearing length (mm)

\(Q\) :

Bearing flow (mm3/s)

\(R_{J}\) :

Journal radius (mm)

\(W_{0}\) :

Applied external load (N)

\(X_{J} ,Z_{J}\) :

Journal center coordinates

\(\theta\) :

Inter-recess angle (degree)

\(\omega_{J}\) :

Journal speed (rad/s) (\(U = \omega_{J} r_{J}\))

\(\mu\) :

Dynamic viscosity (Pa s)

\(\alpha_{pv}\) :

Piezo-viscous coefficient

\(\overline{a}_{b}\) :

\({{a_{b} }/ L}\)

\(\overline{a}_{b}\) :

\({{a_{b} } \mathord{\left/ {\vphantom {{a_{b} } L}} \right. \kern-0pt} L}\)

\(\overline{c}\) :

\({c \mathord{\left/ {\vphantom {c {R_{J} }}} \right. \kern-0pt} {R_{J} }}\)

\(\overline{h}\) :

\({h \mathord{\left/ {\vphantom {h c}} \right. \kern-0pt} c}\)

\(\overline{l}_{cs}\) :

\({{l_{cs} } \mathord{\left/ {\vphantom {{l_{cs} } c}} \right. \kern-0pt} c}\)

\(\overline{p}\) :

\({p \mathord{\left/ {\vphantom {p {p_{s} }}} \right. \kern-0pt} {p_{s} }}\)

\(\overline{t}\) :

\(t(c^{2} p_{s} /\mu_{o} R_{J}^{2} )\)

\(\overline{A}^{e}\) :

Area of eth Element.

\(\overline{C}_{S2}\) :

Restrictor design parameter

\(\overline{F}_{0}\) :

\({{\overline{F}_{0} } \mathord{\left/ {\vphantom {{\overline{F}_{0} } {p_{s} R_{J}^{2} }}} \right. \kern-0pt} {p_{s} R_{J}^{2} }}\)

\(\overline{Q}_{b}\) :

\(Q(\mu_{o} /c^{3} .p_{s} )\)

\(\overline{W}_{0}\) :

\(W_{o} /p_{s} \,R_{J}^{2}\)

\(\overline{X}_{J}\) :

\(X_{J} /c\)

\(\overline{Z}_{J}\) :

\(Z_{J} /c\)

\(\alpha\) :

\(x/R_{J}\)

\(\beta\) :

\(y/R_{J}\)

\(\varepsilon\) :

\(e/c\)

\(\lambda\) :

\(L/D\)

\(\overline{\mu }\) :

\(\mu_{0} /\mu_{r}\)

\(\Omega\) :

\(\omega_{J} (\mu_{o} R_{J}^{2} /c^{2} \,p_{s} )\,\)

\(\overline{\sigma } ,\overline{\delta }\) :

Misalignment parameters

\(\overline{\alpha }_{pv}\) :

\(\alpha_{pv} .p_{s}\)

\(\overline{\Psi }\) :

\(\Psi /c^{3}\)

References

  1. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9, 1709–1715 (1966). https://doi.org/10.1063/1.1761925

    Article  Google Scholar 

  3. Prakash, J., Sinha, P.: Lubrication theory for micropolar fluids and its application to a journal bearing. Int. J. Eng. Sci. 13, 217–232 (1975). https://doi.org/10.1016/0020-7225(75)90031-2

    Article  Google Scholar 

  4. Li, W.-L., Chu, H.-M.: Modified Reynolds equation for coupled stress fluids: a porous media model. Acta Mech. 171, 189–202 (2004). https://doi.org/10.1007/s00707-004-0123-0

    Article  Google Scholar 

  5. Bujurke, N.M., Jayaraman, G.: The influence of couple stresses in squeeze films. Int. J. Mech. Sci. 24, 369–376 (1982). https://doi.org/10.1016/0020-7403(82)90070-4

    Article  Google Scholar 

  6. Misra, J.C., Chandra, S.: Effect of couple stresses on electrokinetic oscillatory flow of blood in the microcirculatory system. J. Mech. Med. Biol. 18, 1850035 (2018). https://doi.org/10.1142/S0219519418500355

    Article  Google Scholar 

  7. Lin, J.-R.: Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids. Tribol. Int. 30, 53–58 (1997). https://doi.org/10.1016/0301-679X(96)00022-9

    Article  Google Scholar 

  8. Lin, J.-R.: Static and dynamic behaviours of pure squeeze films in couple stress fluid-lubricated short journal bearings. Proc. Inst Mech. Eng. Part J J. Eng. Tribol. 211, 29–36 (1997). https://doi.org/10.1243/1350650971542291

    Article  Google Scholar 

  9. Lin, J.-R.: Effects of couple stresses on the lubrication of finite journal bearings. Wear 206, 171–178 (1997). https://doi.org/10.1016/S0043-1648(96)07357-7

    Article  Google Scholar 

  10. Wang, X.-L., Zhu, K.-Q., Wen, S.-Z.: Thermohydrodynamic analysis of journal bearings lubricated with couple stress fluids. Tribol. Int. 34, 335–343 (2001). https://doi.org/10.1016/S0301-679X(01)00022-6

    Article  Google Scholar 

  11. Nabhani, M., El Khlifi, M., Gbehe, O.S.T., Bou-Saïd, B.: Coupled couple stress and surface roughness effects on elasto-hydrodynamic contact. Lubr. Sci. 26, 251–271 (2014). https://doi.org/10.1002/ls.1246

    Article  Google Scholar 

  12. Mahdi, M.A., Hussein, A.W.: Investigation the combined effects of wear and turbulent on the performance of hydrodynamic journal bearing operating with couple stress fluids. Int. J. Struct. Integr. 10, 825–837 (2019). https://doi.org/10.1108/IJSI-11-2018-0083

    Article  Google Scholar 

  13. Elsharkawy, A.A.: Lubricant additives effects on the hydrodynamic lubrication of misaligned conical–cylindrical bearings. Lubr. Sci. 19, 213–229 (2007). https://doi.org/10.1002/ls.43

    Article  Google Scholar 

  14. Walicka, A., Walicki, E., Jurczak, P.: Inertia effects in a multilobe conical bearing lubricated with a couple stress fluid. Int. J. Appl. Mech. Eng. 24, 439–451 (2019). https://doi.org/10.2478/ijame-2019-0027

    Article  Google Scholar 

  15. Chaudhary, A., Rajput, A.K., Verma, R.: Effect of CSL on the characteristics of six-pocket hybrid irregular journal bearing. Proc. Inst Mech. Eng. Part J J. Eng. Tribol. 235, 481–494 (2021). https://doi.org/10.1177/1350650120936856

    Article  Google Scholar 

  16. Awati, V.B., Kengangutti, A.: Surface roughness effect on thermohydrodynamic analysis of journal bearings lubricated with couple stress fluids. Nonlinear Eng. 8, 397–406 (2019). https://doi.org/10.1515/nleng-2018-0017

    Article  Google Scholar 

  17. Zhu, S., Zhang, X.: Thermohydrodynamic lubrication analysis of misaligned journal bearing considering surface roughness and couple stress. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. (2022). https://doi.org/10.1177/13506501221076893

    Article  Google Scholar 

  18. Zheng, L., Zhu, H., Fan, S., Wu, J., Cao, J.: Theoretical research of couple stress effect and surface roughness on lubrication regimes transition of misaligned hydrodynamic journal. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. (2022). https://doi.org/10.1177/13506501221089518

    Article  Google Scholar 

  19. Singh, A., Sharma, S.C.: Influence of percolation effect of additives on the performance of conical textured porous hybrid journal bearing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. (2022). https://doi.org/10.1177/13506501221082744

    Article  Google Scholar 

  20. Bair, S., Liu, Y., Wang, Q.J.: The pressure-viscosity coefficient for Newtonian EHL film thickness with general piezoviscous response. J. Tribol. 128, 624–631 (2006). https://doi.org/10.1115/1.2197846

    Article  Google Scholar 

  21. Tao, L.N.: On journal bearings of finite length with variable viscosity. J. Appl. Mech. 26, 179–183 (2021). https://doi.org/10.1115/1.4011979

    Article  MathSciNet  Google Scholar 

  22. Rajagopal, K., Szeri, A.: On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 459, 2771–2786 (2003). https://doi.org/10.1098/rspa.2003.1145

    Article  MathSciNet  Google Scholar 

  23. Sun, J., Zhu, X., Zhang, L., Wang, X., Wang, C., Wang, H., Zhao, X.: Effect of surface roughness, viscosity-pressure relationship and elastic deformation on lubrication performance of misaligned journal bearings. Ind. Lubr. Tribol. 66, 337–345 (2014). https://doi.org/10.1108/ilt-12-2011-0110

    Article  Google Scholar 

  24. Gu, C., Meng, X., Zhang, D., Xie, Y.: Transient analysis of the textured journal bearing operating with the piezoviscous and shear-thinning fluids. J. Tribol. (2017). https://doi.org/10.1115/1.4035812

    Article  Google Scholar 

  25. Chetti, B., Hemis, M., Tahar, O., Smara, M.: Combined effects of elastic deformation and piezo-viscous dependency on the performance of a journal bearing operating with a non-Newtonian fluid. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. (2022). https://doi.org/10.1177/13506501221080277

    Article  Google Scholar 

  26. Kumar, A., Sharma, S.C.: Optimal parameters of grooved conical hybrid journal bearing with shear thinning and piezo-viscous lubricant behavior. J. Tribol. (2019). https://doi.org/10.1115/1.4043507

    Article  Google Scholar 

  27. Tomar, A.K., Sharma, S.C.: Study on surface roughness and piezo-viscous shear thinning lubricant effects on the performance of hole-entry hybrid spherical journal bearing. Tribol. Int. 168, 107349 (2022). https://doi.org/10.1016/j.triboint.2021.107349

    Article  Google Scholar 

  28. Agrawal, N., Sharma, S.C.: Performance of textured spherical thrust hybrid bearing operating with shear thinning and piezoviscous lubricants. Proc. Inst Mech. Eng. Part J J. Eng. Tribol. 236, 607–633 (2022). https://doi.org/10.1177/13506501211031376

    Article  Google Scholar 

  29. Reddy, G.J.C., Reddy, C.E., Prasad, K.R.K.: Effect of viscosity variation on the squeeze film performance of a narrow hydrodynamic journal bearing operating with couple stress fluids. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 222, 141–150 (2008). https://doi.org/10.1243/13506501JET327

    Article  Google Scholar 

  30. Lin, J.-R., Chu, L.-M., Li, W.-L., Lu, R.-F.: Combined effects of piezo-viscous dependency and non-Newtonian couple stresses in wide parallel-plate squeeze-film characteristics. Tribol. Int. 44, 1598–1602 (2011). https://doi.org/10.1016/j.triboint.2011.04.003

    Article  Google Scholar 

  31. Lin, J.-R., Chu, L.-M., Liang, L.-J.: Effects of viscosity-pressure dependency on the non-Newtonian squeeze film of parallel circular plates. Lubr. Sci. 25, 1–9 (2013). https://doi.org/10.1002/ls.1188

    Article  Google Scholar 

  32. Lahmar, M., Bou-Saïd, B.: Nonlinear dynamic response of an unbalanced flexible rotor supported by elastic bearings lubricated with piezo-viscous polar fluids. Lubricants. 3, 281–310 (2015). https://doi.org/10.3390/lubricants3020281

    Article  Google Scholar 

  33. Mouassa, A., Boucherit, H., Bou-Saïd, B., Lahmar, M., Bensouilah, H., Ellagoune, S.: Steady-state behavior of finite compliant journal bearing using a piezoviscous polar fluid as lubricant. Mech. Ind. 16, 608 (2015). https://doi.org/10.1051/meca/2015040

    Article  Google Scholar 

  34. Rajendrappa, V.K., Naganagowda, H.B., Kumar, J.S., Thimmaiah, R.B.: Combined effect of piezo-viscous dependency and non-Newtonian couple stresses in porous squeeze-film circular plate. J. Adv. Res. Fluid Mech. Therm. Sci. 51, 158–168 (2018)

    Google Scholar 

  35. Zheng, L., Zhu, H., Zhu, J., Deng, Y.: Effects of oil film thickness and viscosity on the performance of misaligned journal bearings with couple stress lubricants. Tribol. Int. 146, 106229 (2020). https://doi.org/10.1016/j.triboint.2020.106229

    Article  Google Scholar 

  36. Dass, T., Gunakala, S.R., Comissiong, D.M.G.: The combined effect of couple stresses, variable viscosity and velocity-slip on the lubrication of finite journal bearings. Ain Shams Eng. J. 11, 501–518 (2020). https://doi.org/10.1016/j.asej.2020.01.002

    Article  Google Scholar 

  37. Vasanth, K.R., Hanumagowda, B.: Rough porous circular plates lubricated with couple stress fluid and pressure dependent viscosity. TWMS J. Appl. Eng. Math. 12, 1123–1134 (2022)

    Google Scholar 

  38. Dubois, G.B., Mabie, H.H., Ocvirk, F.W.: Experimental investigation of oil film pressure distribution for misaligned plain bearings. NACA Technical Note 2507 (1951)

  39. Sun, J., Deng, M., Fu, Y., Gui, C.: Thermohydrodynamic lubrication analysis of misaligned plain journal bearing with rough surface. J. Tribol. (2009). https://doi.org/10.1115/1.4000515

    Article  Google Scholar 

  40. Some, S., Guha, S.K.: Steady-state performance analysis of misaligned double-layered porous journal bearings under coupled-stress lubrication with slip flow and additives percolation effect. Proc. Inst Mech. Eng. Part J J. Eng. Tribol. 233, 841–858 (2019). https://doi.org/10.1177/1350650118806373

    Article  Google Scholar 

  41. Manser, B., Belaidi, I., Hamrani, A., Khelladi, S., Bakir, F.: Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: a numerical survey. Comptes Rendus Mécanique. 347, 141–165 (2019). https://doi.org/10.1016/j.crme.2018.11.002

    Article  Google Scholar 

  42. Das, S., Guha, S.K.: Numerical analysis of steady-state performance of misaligned journal bearings with turbulent effect. J. Braz. Soc. Mech. Sci. Eng. 41, 81 (2019). https://doi.org/10.1007/s40430-019-1583-4

    Article  Google Scholar 

  43. Feng, H., Jiang, S., Ji, A.: Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribol. Int. 130, 245–260 (2019). https://doi.org/10.1016/j.triboint.2018.09.007

    Article  Google Scholar 

  44. Abdou, K.M., Saber, E.: Effect of rotor misalignment on stability of journal bearings with finite width. Alex. Eng. J. 59, 3407–3417 (2020). https://doi.org/10.1016/j.aej.2020.05.020

    Article  Google Scholar 

  45. Yang, T., Han, Y., Wang, Y., Xiang, G.: Numerical analysis of the transient wear and lubrication behaviors of misaligned journal bearings caused by linear shaft misalignment. J. Tribol. (2021). https://doi.org/10.1115/1.4051776

    Article  Google Scholar 

  46. Xie, Z., Shen, N., Zhu, W., Tian, W., Hao, L.: Theoretical and experimental investigation on the influences of misalignment on the lubrication performances and lubrication regimes transition of water lubricated bearing. Mech. Syst. Signal Process. 149, 107211 (2021). https://doi.org/10.1016/j.ymssp.2020.107211

    Article  Google Scholar 

  47. Xu, B., Guo, H., Wu, X., He, Y., Wang, X., Bai, J.: Static and dynamic characteristics and stability analysis of high-speed water-lubricated hydrodynamic journal bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. (2021). https://doi.org/10.1177/13506501211027018

    Article  Google Scholar 

  48. Sahu, K., Sharma, S.C., Ram, N.: misalignment and surface irregularities effect in MR fluid journal bearing. Int. J. Mech. Sci. 221, 107196 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107196

    Article  Google Scholar 

  49. Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Skew-symmetric couple-stress fluid mechanics. Acta Mech. 226, 871–895 (2015). https://doi.org/10.1007/s00707-014-1223-0

    Article  MathSciNet  Google Scholar 

  50. Zhang, W.-M., Meng, G., Peng, Z.-K.: Gaseous slip flow in micro-bearings with random rough surface. Int. J. Mech. Sci. 68, 105–113 (2013). https://doi.org/10.1016/j.ijmecsci.2013.01.004

    Article  Google Scholar 

  51. Rajput, A.K., Sharma, S.C.: Combined influence of geometric imperfections and misalignment of journal on the performance of four pocket hybrid journal bearing. Tribol. Int. 97, 59–70 (2016). https://doi.org/10.1016/j.triboint.2015.12.049

    Article  Google Scholar 

  52. Khatri, C.B., Sharma, S.C.: Analysis of textured multi-lobe non-recessed hybrid journal bearings with various restrictors. Int. J. Mech. Sci. 145, 258–286 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.014

    Article  Google Scholar 

  53. Agrawal, N., Sharma, S.C.: Micro-grooved hybrid spherical thrust bearing with Non-Newtonian lubricant behaviour. Int. J. Mech. Sci. 240, 107940 (2023). https://doi.org/10.1016/j.ijmecsci.2022.107940

    Article  Google Scholar 

  54. Zare Mehrjardi, M.: Dynamic stability analysis of noncircular two-lobe journal bearings with couple stress lubricant regime. Proc. Inst Mech. Eng. Part J J. Eng. Tribol. 235, 1150–1167 (2021). https://doi.org/10.1177/1350650120945517

    Article  Google Scholar 

  55. de Castro, H.F., Cavalca, K.L., Nordmann, R.: Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. J. Sound Vib. 317, 273–293 (2008). https://doi.org/10.1016/j.jsv.2008.02.047

    Article  Google Scholar 

  56. Sahu, K., Sharma, S.C.: Magneto-rheological fluid slot-entry journal bearing considering thermal effects. J. Intell. Mater. Syst. Struct. 30, 2831–2852 (2019). https://doi.org/10.1177/1045389X19873401

    Article  Google Scholar 

  57. Wang, D., Penter, L., Hänel, A., Ihlenfeldt, S., Wiercigroch, M.: Stability enhancement and chatter suppression in continuous radial immersion milling. Int. J. Mech. Sci. 235, 107711 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107711

    Article  Google Scholar 

  58. Phalle, V.M., Sharma, S.C., Jain, S.C.: Performance analysis of a 2-lobe worn multirecess hybrid journal bearing system using different flow control devices. Tribol. Int. 52, 101–116 (2012). https://doi.org/10.1016/j.triboint.2012.03.009

    Article  Google Scholar 

  59. Sharma, S.C., Tomar, A.K.: Study on MR fluid hybrid hole-entry spherical journal bearing with micro-grooves. Int. J. Mech. Sci. 202–203, 106504 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106504

    Article  Google Scholar 

  60. Jain, S.C., Sinhasan, R.: Performance of flexible shell journal bearings with variable viscosity lubricants. Tribol. Int. 16, 331–339 (1983). https://doi.org/10.1016/0301-679X(83)90043-9

    Article  Google Scholar 

  61. Mokhiamer, U.M., Crosby, W.A., El-Gamal, H.A.: A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner. Wear 224, 194–201 (1999). https://doi.org/10.1016/S0043-1648(98)00320-2

    Article  Google Scholar 

  62. Metman, K.J., Muijderman, E.A., van Heijningen, G.J.J., Halemane, D.M.: Load capacity of multi-recess hydrostatic journal bearings at high eccentricities. Tribol. Int. 19, 29–34 (1986). https://doi.org/10.1016/0301-679X(86)90092-7

    Article  Google Scholar 

  63. Sharma, S.C., Phalle, V.M., Jain, S.C.: Combined influence of wear and misalignment of journal on the performance analysis of three-lobe three-pocket hybrid journal bearing compensated with capillary restrictor. J. Tribol. (2012). https://doi.org/10.1115/1.4005644

    Article  Google Scholar 

  64. Sharma, S.C., Jain, S.C., Sinhasan, R., Shalia, R.: Comparative study of the performance of six-pocket and four-pocket hydrostatic/hybrid flexible journal bearings. Tribol. Int. 28, 531–539 (1995). https://doi.org/10.1016/0301-679X(96)85541-1

    Article  Google Scholar 

  65. Chandrawat, H.M., Sinhasan, R.: A study of steady state and transient performance characteristics of a flexible shell journal bearing. Tribol. Int. 21, 137–148 (1988). https://doi.org/10.1016/0301-679X(88)90048-5

    Article  Google Scholar 

  66. Chang-Jian, C.-W., Chen, C.-K.: Non-linear dynamic analysis of rub-impact rotor supported by turbulent journal bearings with non-linear suspension. Int. J. Mech. Sci. 50, 1090–1113 (2008). https://doi.org/10.1016/j.ijmecsci.2008.02.003

    Article  Google Scholar 

  67. Bujurke, N.M., Naduvinamani, N.B.: On the performance of narrow porous journal bearing lubricated with couple stress fluid. Acta Mech. 86, 179–191 (1991). https://doi.org/10.1007/BF01175956

    Article  Google Scholar 

  68. Bujurke, N.M., Patil, H.P., Bhavi, S.G.: Porous slider bearing with couple stress fluid. Acta Mech. 85, 99–113 (1990). https://doi.org/10.1007/BF01213545

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Singh.

Ethics declarations

Conflict of interest

The authors declare that that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Derivation of modified form of Reynold’s equation

The flow of a piezo-viscous-polar lubricant is governed by continuity equation (Eq. 1), momentum balance equation (Stokes theory of couple stress fluid) (Eq. 2) and Barus’s law (Eq. 3) [2, 30, 49].

The following assumptions incorporated in the derivation of generalized Reynolds equation governing the flow PVP lubricant in a finite width journal bearing system [66]:

  1. 1.

    The lubricant is incompressible, i.e., \(\nabla .\vec{u}\) = 0

  2. 2.

    The flow is two dimensional, i.e., \(w\) = 0; \(\vec{u}\) = \(u\hat{i} + v\hat{j}\)

  3. 3.

    The flow is laminar.

  4. 4.

    Inertia forces are negligible i.e., \(\rho \frac{{D\vec{u}}}{Dt}\) = 0

  5. 5.

    Body forces per unit mass are negligible i.e., \(\vec{B}_{f}\) = 0

  6. 6.

    Body couples per unit mass are neglected i.e., \(\vec{C}\) = 0

  7. 7.

    The axial length of the bearing system is sufficient that results no change in the flow field with respect to axial dimension i.e., \(\frac{{\partial \vec{u}}}{\partial y} = 0\) which means \(u\) = \(u\left( {x,z} \right)\), \(v\) = \(v\left( {x,z} \right)\)

  8. 8.

    Above assumptions results in pressure variation across the fluid film thickness is zero, i.e., \(\frac{\partial p}{{\partial z}}\) = 0

  9. 9.

    The velocity gradients in X direction are very small as compared to Z direction across the fluid film thickness, i.e., \(\frac{\partial u}{{\partial x}}\) <  <  <  < \(\frac{\partial u}{{\partial z}}\) and \(\frac{\partial v}{{\partial x}}\) <  <  <  < \(\frac{\partial v}{{\partial z}}\)

Incorporating the assumptions of lubricant flow in clearance space of bearing system in Eqs. (2) and (3) in X and Y direction can be expressed as follows:

$$\frac{{\partial^{4} u}}{{\partial z^{4} }} - \frac{{\mu_{0} e^{{\alpha_{pv} p}} }}{\eta }\frac{{\partial^{2} u}}{{\partial z^{2} }} = - \frac{1}{\eta }\frac{\partial p}{{\partial x}}$$
(A.1a)
$$\frac{{\partial^{4} v}}{{\partial z^{4} }} - \frac{{\mu_{0} e^{{\alpha_{pv} p}} }}{\eta }\frac{{\partial^{2} v}}{{\partial z^{2} }} = - \frac{1}{\eta }\frac{\partial p}{{\partial y}}$$
(A.1b)

Further, these Eqs. (A.1a, A.1b) can also be modified as:

$$\frac{{\partial^{4} u}}{{\partial z^{4} }} - \frac{{e^{{\alpha_{pv} p}} }}{{l_{cs}^{2} }}\frac{{\partial^{2} u}}{{\partial z^{2} }} = - \frac{1}{\eta }\frac{\partial p}{{\partial x}}$$
(A.2a)
$$\frac{{\partial^{4} v}}{{\partial z^{4} }} - \frac{{e^{{\alpha_{pv} p}} }}{{l_{cs}^{2} }}\frac{{\partial^{2} v}}{{\partial z^{2} }} = - \frac{1}{\eta }\frac{\partial p}{{\partial y}}$$
(A.2b)

where, couple stress parameter, \(l_{cs} = \sqrt {\frac{\eta }{{\mu_{0} }}}\).

Solving the differential Eqs. (A.2a, A.2b), the generalized solution for velocity components (\(u\) and \(v\)) may be expressed as:

$$u = A_{0} + A_{1} z + A_{2} \cosh \left( {\frac{{ze^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right) + A_{3} \sinh \left( {\frac{{ze^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right) + \frac{1}{{2\mu_{0} e^{{\alpha_{pv} p}} }}\frac{\partial p}{{\partial x}}z^{2}$$
(A.3)
$$v = B_{0} + B_{1} z + B_{2} \cosh \left( {\frac{{ze^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right) + B_{3} \sinh \left( {\frac{{ze^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right) + \frac{1}{{2\mu_{0} e^{{\alpha_{pv} p}} }}\frac{\partial p}{{\partial y}}z^{2}$$
(A.4)

where, \(A_{0} ,A_{1} ,A_{2} ,A_{3} ,B_{0} ,B_{1} ,B_{2} {\text{ and }}B_{3}\) are constants.

Applying the boundary conditions [10, 67, 68] in Eqs. (A.3-A.4), the constants of generalized velocity expression yield as:

Constants

Computed value of constants

\(A_{0}\)

\(\frac{{l^{2} }}{{\mu_{0} }}\frac{\partial p}{{\partial x}}e^{{ - 2\alpha_{pv} p}}\)

\(A_{1}\)

\(\frac{U}{h} - \frac{1}{2\mu_{0}}\frac{\partial p}{\partial x}\frac{h}{e^{\alpha_{pv}p}}\)

\(A_{2}\)

\(- \frac{{l_{cs}^{2} }}{{\mu_{0} }}\frac{\partial p}{{\partial x}}e^{{ - 2\alpha_{pv} p}}\)

\(A_{3}\)

\(\left[ {\cosh \left( {\frac{{he^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right) - 1} \right]\left( {\frac{{l_{cs}^{2} }}{{\mu_{0} }}\frac{\partial p}{{\partial x}}} \right)\frac{{e^{{ - 2\alpha_{pv} p}} }}{{\sinh \left( {\frac{{he^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right)}}\)

\(B_{0}\)

\(\frac{{l^{2} }}{{\mu_{0} }}\frac{\partial p}{{\partial y}}e^{{ - 2\alpha_{pv} p}}\)

\(B_{1}\)

\( - \frac{1}{2\mu_{0}}\frac{\partial p}{\partial y}\frac{h}{e^{\alpha_{pv}p}}\)

\(B_{2}\)

\(- \frac{{l_{cs}^{2} }}{{\mu_{0} }}\frac{\partial p}{{\partial y}}e^{{ - 2\alpha_{pv} p}}\)

\(B_{3}\)

\(\left[ {\cosh \left( {\frac{{he^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right) - 1} \right]\left( {\frac{{l_{cs}^{2} }}{{\mu_{0} }}\frac{\partial p}{{\partial y}}} \right)\frac{{e^{{ - 2\alpha_{pv} p}} }}{{\sinh \left( {\frac{{he^{{\frac{{\alpha_{pv} p}}{2}}} }}{{l_{cs} }}} \right)}}\)

Using the computed values of constants of generalised velocity expressions, the simplified expression of velocity components u and v in X and Y directions respectively are derived as follows (A.5, A.6):

$$u = \frac{Uz}{h} + \frac{{e^{{ - 2\alpha_{pv} p}} }}{{2\mu_{0} }}\frac{\partial p}{{\partial x}}\left\{ {\frac{{z\left( {z - h} \right)}}{{e^{{ - \alpha_{pv} p}} }} + 2l_{cs}^{2} \left[ {1 - \frac{{\cosh \left( {\frac{2z - h}{{2l_{cs} e^{{ - \frac{1}{2}\alpha_{pv} p}} }}} \right)}}{{\cosh \left( {\frac{h}{{2l_{cs} e^{{ - \frac{1}{2}\alpha_{pv} p}} }}} \right)}}} \right]} \right\}$$
(A.5)
$$v = \frac{{e^{{ - 2\alpha_{pv} p}} }}{{2\mu_{0} }}\frac{\partial p}{{\partial y}}\left\{ {\frac{{z\left( {z - h} \right)}}{{e^{{ - \alpha_{pv} p}} }} + 2l_{cs}^{2} \left[ {1 - \frac{{\cosh \left( {\frac{2z - h}{{2l_{cs} e^{{ - \frac{1}{2}\alpha_{pv} p}} }}} \right)}}{{\cosh \left( {\frac{h}{{2l_{cs} e^{{ - \frac{1}{2}\alpha_{pv} p}} }}} \right)}}} \right]} \right\}$$
(A.6)

The integration of Eqs. (A.5, A.6) across the oil film thickness direction yields the flow rates per unit width in \(X and Y\) direction which maybe expressed as:

$$q_{x} = \int\limits_{0}^{h} {udz} = \frac{Uh}{2} - \frac{1}{{12\mu_{0} }}\frac{\partial p}{{\partial x}}\Psi \left( {h,l_{cs} ,\alpha_{pv} ,p} \right)$$
(A.7)
$$q_{y} = \int\limits_{0}^{h} {vdz} = - \frac{1}{{12\mu_{0} }}\frac{\partial p}{{\partial y}}\Psi \left( {h,l_{cs} ,\alpha_{pv} ,p} \right)$$
(A.8)

where,

$$\Psi \left( {h,l_{cs} ,\alpha_{pv} ,p} \right) = h^{3} e^{{ - \alpha_{pv} p}} - 12l_{cs}^{2} \left[ {he^{{ - 2\alpha_{pv} p}} - 2l_{cs} e^{{ - \frac{5}{2}\alpha_{pv} p}} \tanh \left( {\frac{{he^{{\frac{1}{2}\alpha_{pv} p}} }}{{2l_{cs} }}} \right)} \right]$$

For 2D incompressible flow of the lubricant, integrating the continuity Eq. (2.1) across the oil the film thickness transforms as:

$$\frac{\partial h}{{\partial t}} + \frac{{\partial q_{x} }}{\partial x} + \frac{{\partial q_{y} }}{\partial y} = 0$$
(A.9)

Substituting the expressions for fluid flow rates (A.7, A.8) in integrated continuity equation (A.9), the modified form of Reynold’s equation yields as:

$$\frac{\partial }{\partial x}\left( {\frac{{\Psi \left( {h,l_{cs} ,\alpha_{pv} ,p} \right)}}{{12\mu_{0} }}\frac{\partial p}{{\partial x}}} \right) + \frac{\partial }{\partial y}\left( {\frac{{\Psi \left( {h,l_{cs} ,\alpha_{pv} ,p} \right)}}{{12\mu_{0} }}\frac{\partial p}{{\partial y}}} \right) = \frac{U}{2}\frac{\partial h}{{\partial x}} + \frac{\partial h}{{\partial t}}$$
(A.10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, A.K., Singh, V. Piezo-viscous-polar lubrication of hybrid journal bearing under misaligned operation. Acta Mech 235, 3005–3032 (2024). https://doi.org/10.1007/s00707-023-03816-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03816-8

Navigation