Skip to main content
Log in

Adaptive soft computing paradigm for a full-car active suspension system with driver biodynamic vibration damping control

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the current car automobile industry, vehicle ride comfort is the most important design aspect due to its direct effect on the health and efficiency of human beings. The available literature on vehicle active suspension systems to improve vehicle performance (ride comfort, handling, road holding and suspension deflection, etc.) is somewhat sparse, and there is a major lack of research on seated driver biodynamic comfort analysis and enhancement. In this paper, a nonlinear full-car active suspension system with seated driver biodynamics [19 degrees of freedom (DoF)] model is presented. The effects of biodynamic vibrations on different parts of the driver’s body are examined. A NeuroFuzzy adaptive control paradigm is applied to the full-car active suspension system to damp the vehicle low-frequency vibrations, which can cause health problems and fatigue, resulting in fatal accidents. The effectiveness of the proposed control strategy to damp vehicle low-frequency and biodynamic vibrations is validated by comparing the performance with conventional (passive) and PID-controlled suspension systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hulshof C, van Zanten BV (1987) Whole-body vibration and low-back pain. Int Arch Occup Environ Health 59(3):205–220

    Article  Google Scholar 

  2. Burdorf A, Sorock G (1997) Positive and negative evidence of risk factors for back disorders. Scand J Work Environ Health:243–256

  3. A.L. Backman. (1983) Health survey of professional drivers.Scandinavian journal of work, environment and health 30-35

  4. Tiemessen IJ, Hulshof CT, Fringsresen MH (2009) Effectiveness of an occupational health intervention program to reduce whole body vibration exposure: An evaluation study with a controlled pretestposttest design. Am J Ind Med 52(12):943–952

    Article  Google Scholar 

  5. Gallagher S, Mayton AG (2007) Back injury control measures for manual lifting and seat design. Min Eng 59(12):41–49

    Google Scholar 

  6. Liang CC, Chiang CF (2006) A study on biodynamic models of seated human subjects exposed to vertical vibration. Int J Ind Ergon 36(10):869–890

    Article  Google Scholar 

  7. Verver MM, De Lange R, van Hoof JF, Wismans JS (2005) Aspects of seat modelling for seating comfort analysis. Appl Ergon 36(1):33–42

    Article  Google Scholar 

  8. Kim TH, Kim YT, Yoon YS (2005) Development of a biomechanical model of the human body in a sitting posture with vibration transmissibility in the vertical direction. Int J Ind Ergon 35(9):817–829

    Article  Google Scholar 

  9. Paddan GS, Griffin MJ (2002) Evaluation of whole-body vibration in vehicles. J Sound Vib 253(1):195–213

    Article  Google Scholar 

  10. Boileau P, Rakheja S (1998) Whole-body vertical biodynamic response characteristics of the seated vehicle driver: measurement and model development. Int J Ind Ergon 22(6):449–472

    Article  Google Scholar 

  11. Wang W, Rakheja S, Boileau P (2004) Effects of sitting postures on biodynamic response of seated occupants under vertical vibration. Int J Ind Ergon 34(4):289–306

    Article  Google Scholar 

  12. Qassem W (1996) Model prediction of vibration effects on human subject seated on various cushions. Med Eng Phys 18(5):350–358

    Article  Google Scholar 

  13. Paddan GS, Griffin MJ (1998) A review of the transmission of translational seat vibration to the head. J Sound Vib 215(4):863–882

    Article  Google Scholar 

  14. Paddan GS, Griffin MJ (2002) Effect of seating on exposures to whole-body vibration in vehicles. J Sound Vib 253(1):215–241

    Article  Google Scholar 

  15. Hrovat Davor (1997) Survey of advanced suspension developments and related optimal control applications. Automatica 33(10):1781–1817

    Article  MATH  MathSciNet  Google Scholar 

  16. Els PS, Theron NJ, Uys PE, Thoresson MJ (2007) The ride comfort vs. handling compromise for off-road vehicles. J Terramech 44(4):303–317

    Article  Google Scholar 

  17. Rahmi G (2003) Active control for seat vibrations of a vehicle model using various suspension alternatives. Turk J Eng Environ Sci 27:361–373

    Google Scholar 

  18. Yagiz N, Hacioglu Y (2008) Backstepping control of a vehicle with active suspensions. Control Eng Pract 16(12):1457–1467

    Article  Google Scholar 

  19. OPREA RA, MIHAILESCU M (2011) Oscillations of the vehicles with dry friction damping. InSISOM 2011 and Session of the Commission of Acoustics

  20. Alleyne A, Hedrick JK (1995) Nonlinear adaptive control of active suspensions. IEEE Trans Control Syst Technol 3(1):94–101

    Article  Google Scholar 

  21. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  22. Yagiz N, Hacioglu Y, Taskin Y (2008) Fuzzy sliding-mode control of active suspensions. IEEE Trans Ind Electron 55(11):3883–3890

    Article  Google Scholar 

  23. Li H, Yu J, Hilton C, Liu H (2013) Adaptive sliding-mode control for nonlinear active suspension vehicle systems using TS fuzzy approach. IEEE Trans Ind Electron 60(8):3328–3338

    Article  Google Scholar 

  24. Eski I, Yldrm Ş (2009) Vibration control of vehicle active suspension system using a new robust neural network control system. Simul Model Pract Theory 17(5):778–793

  25. Cao J, Liu H, Li P, Brown DJ (2008) State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Trans Intell Transp Syst 9(3):392–405

    Article  Google Scholar 

  26. Sun PY, Chen H (2003) Multiobjective output-feedback suspension control on a half-car model. InControl Applications, 2003. CCA 2003. In: Proceedings of 2003 IEEE conference, vol 1, pp 290–295

  27. Kruczek A, Stribrsky A (2004) A full-car model for active suspension-some practical aspects. InMechatronics, 2004. ICM’04. In: Proceedings of the IEEE international conference, pp 41–45

  28. Khan L, Qamar S, Khan MU (2014) Comparative analysis of adaptive NeuroFuzzy control techniques for full car active suspension system. Arab J Sci Eng 39(3):2045–2069

    Article  MathSciNet  Google Scholar 

  29. Dong XM, Yu M, Liao CR, Chen WM (2010) Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear dyn 59(3):433–453

    Article  MATH  Google Scholar 

  30. Du H, Li W, Zhang N (2012) Integrated seat and suspension control for a quarter car with driver model. IEEE Trans Veh Technol 61(9):3893–3908

    Article  Google Scholar 

  31. Gudarzi M, Oveisi A (2014) Robust control for ride comfort improvement of an active suspension system considering uncertain driver’s biodynamics. J Low Freq Noise Vib Act Control 33(3):317–340

    Article  Google Scholar 

  32. International organization for Standardization, Mechanical vibration and shock-evaluation of human exposure to whole body vibration-part general requirement, ISO2631-1 1997

  33. Sekulić D, Dedović V, Rusov S, Šalinić S, Obradović A (2013) Analysis of vibration effects on the comfort of intercity bus users by oscillatory model with ten degrees of freedom. Appl Math Model 37(18):8629–8644

    Article  Google Scholar 

  34. Sun W, Gao H, Kaynak O (2011) Finite frequency \(H_ { infty}\) control for vehicle active suspension systems. IEEE Trans Control Syst Technol 19(2):416–422

    Article  Google Scholar 

  35. Zuo L, Nayfeh SA (2003) Low order continuous-time filters for approximation of the ISO 2631–1 human vibration sensitivity weightings. J Sound Vib 265(2):459–465

    Article  Google Scholar 

  36. Gallais C (2008) Effect of vibration exposure duration on discomfort. PhD thesis, University of Southampton

  37. Qassem W, Othman MO, Abdul-Majeed S (1994) The effects of vertical and horizontal vibrations on the human body. Med Eng Phys 16(2):151–161

    Article  Google Scholar 

  38. Kukolj D (2002) Design of adaptive Takagi-Sugeno-Kang fuzzy models. Appl Soft Comput 2(2):89–103

    Article  Google Scholar 

  39. Gupta MM, Qi J (1991) Theory of T-norms and fuzzy inference methods. Fuzzy Sets Syst 40(3):431–450

    Article  MATH  MathSciNet  Google Scholar 

  40. Liang CC, Chiang CF, Nguyen TG (2007) Biodynamic responses of seated pregnant subjects exposed to vertical vibrations in driving conditions. Veh Syst Dyn 45(11):1017–1049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiq Khan.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Appendices

Appendix A

1.1 A.1 State vector

The state vector is defined as follows:

$$\begin{aligned} \begin{array}{c} \left[ y\right] _{38\times 1} \end{array} =\left[ \begin{array}{ccc} y_{1} \ y_{2} \ \ldots \ y_{19} \ y_{20} \ y_{21} \ \ldots \ y_{38} \end{array}\right] ^T_{38\times 1} \end{aligned}$$
(26)

1.2 A.2 State matrices

The nonlinear deferential matrix, input matrix, dry friction matrix, and input excitation are as follows:

$$\begin{aligned} \begin{array}{c} \left[ F_\mathrm{car,1}(y)\right] _{8\times 1} \end{array} =\left[ \begin{array}{ccc} y_{20} \ y_{21} \ y_{22} \ y_{23} \ y_{24} \ y_{25} \ y_{26} \ y_{27} \end{array}\right] ^T_{8\times 1} \end{aligned}$$
(27)
$$\begin{aligned} \begin{array}{c} \left[ F_\mathrm{car,2}(y)\right] _{8\times 1} \end{array} = \left[ \begin{array}{ccc} (1/m_1)[k_{s1}(y_6+a\sin y_7-c\sin y_8-y_1)-k_{t1}(y_1)\\ +c_{s1}(y_{25}+ay_{26}\cos y_7-cy_{27}\cos y_8-y_{20})]\\ (1/m_2)[k_{s2}(y_6+a\sin y_7+d\sin y_8-y_2)-k_{t2}(y_2)\\ +c_{s2}(y_{25}+ay_{26}\cos y_7+dy_{27}\cos y_8-y_{21})]\\ (1/m_3)[k_{s3}(y_6-b\sin y_7-c\sin y_8-y_3)-k_{t3}(y_3)\\ +c_{s3}(y_{25}-by_{26}\cos y_7-cy_{27}\cos y_8-y_{22})]\\ (1/m_4)[k_{s4}(y_6-b\sin y_7+d\sin y_8-y_4)-k_{t4}(y_4)\\ +c_{s4}(y_{25}-by_{26}\cos y_7+dy_{27}\cos y_8-y_{23})]\\ (1/m_5)[k_{s5}(y_6+e\sin y_7+f\sin y_8-y_5)+c_{s5}(y_{25}\\ +ey_{26}\cos y_7+fy_{27}\cos y_8-y_{24})+k_9(y_9-\\ y_5)+c_9(y_{28}-y_{24})]\\ (1/m_6)[k_{s1}(y_1-a\sin y_7+c\sin y_8-y_6)+c_{s1}(y_{20}\\ -ay_{26}\cos y_7+y_{27}\cos y_8-y_{25})+k_{s2}(y_2-a\sin y_7\\ -d\sin y_8-y_6)+c_{s2}(y_{21}-ay_{26}\cos y_7-dy_{27}\cos y_8\\ -y_{25})+k_{s3}(y_3+b\sin y_7+c\sin y_8-y_6)+c_{s3}(y_{22}\\ +by_{26}\cos y_7+cy_{27}\cos y_8-y_{25})+k_{s4}(y_4+b\sin y_7\\ -d\sin y_8-y_6)+c_{s4}(y_{23}+by_{26}\cos y_7-dy_{27}\cos y_8\\ -y_{25})+k_{s5}(y_5-e\sin y_7-f\sin y_8-y_6)+c_{s5}(y_{24}\\ -ey_{26}\cos y_7-fy_{27}\cos y_8-y_{25})]\\ (1/I_{\theta })[[k_{s1}(y_1-a\sin y_7+c\sin y_8-y_6)+c_{s1}(y_{20}\\ -ay_{26}\cos y_7+cy_{27}\cos y_8-y_{25})](a\cos y_7)+[k_{s2}(y_2\\ -a\sin y_7-d\sin y_8-y_6)+c_{s2}(y_{21}-ay_{26}\cos y_7\\ -dy_{27}\cos y_8-y_{25})](a\cos y_7)+[k_{s3}(y_3+b\sin y_7\\ +c\sin y_8-y_6)+c_{s3}(y_{22}+by_{26}\cos y_7+cy_{27}\cos y_8\\ -y_{25})](-b\cos y_7)+[k_{s4}(y_4+b\sin y_7-d\sin y_8-y_6)\\ +c_{s4}(y_{23}+by_{26}\cos y_7-dy_{27}\cos y_8-y_{25})](-b\cos y_7)\\ +[k_{s5}(y_5-e\sin y_7-f\sin y_8-y_6)+c_{s5}(y_{24}-ey_{26}\\ \cos y_7-fy_{27}\cos y_8-y_{25})](e\cos y_7)]\\ (1/I_{\alpha })[[k_{s1}(y_1-a\sin y_7+c\sin y_8-y_6)+c_{s1}(y_{20}\\ -ay_{26}\cos y_7+cy_{27}\cos y_8-y_{25})](-c\cos y_8)+[k_{s2}(y_2\\ -a\sin y_7-d\sin y_8-y_6)+c_{s2}(y_{21}-ay_{26}\cos y_7-dy_{27}\\ \cos y_8-y_{25})](d\cos y_8)+[k_{s3}(y_3+b\sin y_7+c\sin y_8\\ -y_6)+c_{s3}(y_{22}+by_{26}\cos y_7+cy_{27}\cos y_8-y_{25})]\\ (-c\cos y_8)+[k_{s4}(y_4+b\sin y_7-d\sin y_8-y_6)+c_{s4}(y_{23}\\ +by_{26}\cos y_7-dy_{27}\cos y_8-y_{25})](d\cos y_8)+[k_{s5}(y_5\\ -e\sin y_7-f\sin y_8-y_6)+c_{s5}(y_{24}-ey_{26}\cos y_7\\ -fy_{27}\cos y_8-y_{25})](f\cos y_8)] \end{array}\right] _{8\times 1} \end{aligned}$$
(28)
$$\begin{aligned} \begin{array}{c} \left[ F_\mathrm{driver,3}(y)\right] _{11\times 1} \end{array} =\left[ \begin{array}{ccc} y_{28} \ y_{29} \ y_{30} \ y_{31} \ y_{32} \ y_{33} \ y_{34} \ y_{35} \ y_{36} \ y_{37} \ y_{38} \end{array}\right] ^T_{11\times 1} \end{aligned}$$
(29)
$$\begin{aligned} \begin{array}{c} \left[ F_\mathrm{driver,4}(y)\right] _{11\times 1} \end{array} =\left[ \begin{array}{ccc} (1/m_9)[k_{9}(y_5-y_9)+k_{10}(y_{10}-y_9)+k_{16}(y_{16}-y_9)+c_{9}\\ (y_{24}-y_{28})+c_{10}(y_{29}-y_{28})+c_{16}(y_{35}-y_{28})]\\ (1/m_{10})[k_{10}(y_9-y_{10})+k_{11}(y_{11}-y_{10})+c_{10}(y_{28}-y_{29})\\ +c_{11}(y_{30}-y_{29})]\\ (1/m_{11})[k_{11}(y_{10}-y_{11})+k_{12}(y_{12}-y_{11})+c_{11}(y_{29}-y_{30})\\ +c_{12}(y_{31}-y_{30})]\\ (1/m_{12})[k_{12}(y_{11}-y_{12})+k_{13}(y_{13}-y_{12})+c_{12}(y_{30}-y_{31})\\ +c_{13}(y_{32}-y_{31})]\\ (1/m_{13})[k_{13,12}(y_{12}-y_{13})+k_{13,17}(y_{17}-y_{13})+k_{14}(y_{14}-\\ y_{13})+c_{13,12}(y_{31}-y_{32})+c_{13,17}(y_{36}-y_{32})+c_{14}(y_{33}\\ -y_{32})]\\ (1/m_{14})[k_{14}(y_{13}-y_{14})+k_{15}(y_{15}-y_{14})+c_{14}(y_{32}-y_{33})\\ +c_{15}(y_{34}-y_{33})]\\ (1/m_{15})[k_{15}(y_{14}-y_{15})+c_{15}(y_{33}-y_{34})]\\ (1/m_{16})[k_{16}(y_{9}-y_{16})+k_{17}(y_{17}-y_{16})+c_{16}(y_{28}-y_{35})\\ +c_{17}(y_{36}-y_{35})]\\ (1/m_{17})[k_{17}(y_{16}-y_{17})+k_{13,17}(y_{13}-y_{17})+k_{18}(y_{18}-\\ y_{17})+c_{17}(y_{31}-y_{36})+c_{13,17}(y_{32}-y_{36})+c_{18}(y_{37}-y_{36})]\\ (1/m_{18})[k_{18}(y_{17}-y_{18})+k_{19}(y_{19}-y_{18})+c_{18}(y_{36}-y_{37})\\ +c_{19}(y_{38}-y_{37})]\\ (1/m_{19})[k_{19}(y_{18}-y_{19})+c_{19}(y_{37}-y_{38})] \end{array}\right] _{11\times 1} \end{aligned}$$
(30)
$$\begin{aligned} \begin{array}{c} \left[ B_\mathrm{car}\right] _{16\times 4} \end{array} =\left[ \begin{array}{ccccc} &{} &{}\,\quad[0]_{8\times 4}&{} &{}\\ 1/m_1 &{}\,\quad 0 &{}\,\quad 0 &{}\,\quad 0\\ 0 &{}\,\quad 1/m_2 &{}\,\quad 0 &{}\,\quad 0\\ 0 &{}\,\quad 0 &{}\,\quad 1/m_3 &{}\,\quad 0\\ 0 &{}\,\quad 0 &{}\,\quad 0 &{}\,\quad 1/m_4\\ 0 &{}\,\quad 0 &{}\,\quad 0 &{}\,\quad 0\\ 1/m_6 &{}\,\quad 1/m_6 &{}\,\quad 1/m_6 &{}\,\quad 1/m_6\\ (a/I_{\theta })\cos y_7 &{}\,\quad (a/I_{\theta })\cos y_7 &{}\,\quad (-b/I_{\theta })\cos y_7 &{}\,\quad (-b/I_{\theta })\cos y_7\\ (-c/I_{\alpha })\cos y_8 &{}\,\quad (d/I_{\alpha })\cos y_8 &{}\,\quad (-c/I_{\alpha })\cos y_8 &{}\,\quad (d/I_{\alpha })\cos y_8 \end{array}\right] _{16\times 4} \end{aligned}$$
(31)
$$\begin{aligned} \begin{array}{c} \left[ B_\mathrm{driver}\right] _{22\times 4} \end{array} =\left[ \begin{array}{c} 0 \end{array}\right] _{22\times 4} \end{aligned}$$
(32)
$$\begin{aligned} \begin{array}{c} \left[ Q_\mathrm{car}\right] _{16\times 4} \end{array} =\left[ \begin{array}{ccccc} &{} &{}\, \quad [0]_{8\times 4}&{} &{}\\ 1/m_1 &{}\, \quad 0 &{}\, \quad 0 &{}\, \quad 0\\ 0 &{}\, \quad 1/m_2 &{}\, \quad 0 &{}\, \quad 0\\ 0 &{}\, \quad 0 &{}\, \quad 1/m_3 &{}\, \quad 0\\ 0 &{}\, \quad 0 &{}\, \quad 0 &{}\, \quad 1/m_4\\ 0 &{}\, \quad 0 &{}\, \quad 0 &{}\, \quad 0\\ -1/m_6 &{}\, \quad -1/m_6 &{}\, \quad -1/m_6 &{}\, \quad -1/m_6\\ (-a/I_{\theta })\cos y_7 &{}\, \quad (-a/I_{\theta })\cos y_7 &{}\, \quad (b/I_{\theta })\cos y_7 &{}\, \quad (b/I_{\theta })\cos y_7\\ (c/I_{\alpha })\cos y_8 &{}\, \quad (-d/I_{\alpha })\cos y_8 &{}\, \quad (c/I_{\alpha })\cos y_8 &{}\, \quad (-d/I_{\alpha })\cos y_8 \end{array}\right] _{16\times 4} \end{aligned}$$
(33)
$$\begin{aligned} \begin{array}{c} \left[ Q_\mathrm{driver}\right] _{22\times 4} \end{array} =\left[ \begin{array}{c} 0 \end{array}\right] _{22\times 4} \end{aligned}$$
(34)
$$\begin{aligned} \begin{array}{c} \left[ G_\mathrm{car}\right] _{16\times 4} \end{array} =\left[ \begin{array}{ccccc} &{} &{}\,\quad[0]_{8\times 4}&{} &{}\\ k_{t1} &{}\,\quad 0 &{}\,\quad 0 &{}\,\quad 0\\ 0 &{}\,\quad k_{t2} &{}\,\quad 0 &{}\,\quad 0\\ 0 &{}\,\quad 0 &{}\,\quad k_{t3} &{}\,\quad 0\\ 0 &{}\,\quad 0 &{}\,\quad 0 &{}\,\quad k_{t4}\\ &{} &{}\,\quad[0]_{4\times 4}&{} &{} \end{array}\right] _{16\times 4} \end{aligned}$$
(35)
$$\begin{aligned} \begin{array}{c} \left[ G_\mathrm{driver}\right] _{22\times 4} \end{array} =\left[ \begin{array}{c} 0 \end{array}\right] _{22\times 4} \end{aligned}$$
(36)

1.3 A.3 Vehicle parameters

$$\begin{array}{ll} m_6=1100\, \mathrm{kg}, I_\theta =1848 \,\mathrm{kg\,m^2}, I_\alpha =550\, \mathrm{kg \, m^2}, \\ m_1=m_2=25\, \mathrm{kg}, m_3=m_4=45 \,\mathrm{kg}, m_5=20 \,\mathrm{kg}\\ k_{s1}=k_{s2}=15000\,\mathrm{N/m}, k_{s3}=k_{s4}=17000\,\mathrm{N/m},\\ k_{s5}=15000\,\mathrm{N/m}\\ c_{s1}=c_{s2}=c_{s3}=c_{s4}=2500\,\mathrm{N\,s/m}, c_{s5}=150\,\mathrm{N\,s/m}\\ k_{t1}=k_{t2}=k_{t3}=k_{t4}=250000\,\mathrm{N/m}\\ a=1.2\,\mathrm{m},b=1.4\,\mathrm{m},c=0.5\,\mathrm{m},d=1.0\,\mathrm{m},e=0.3\,\mathrm{m}, \\ f=0.25\,\mathrm{m} \end{array}$$

1.4 A.4 Driver model parameters

$$\begin{array}{ll} m_9=27.23 \, \mathrm{kg},\,m_{10}=5.906 \, \mathrm{kg}, \,m_{11}=0.454 \, \mathrm{kg}, \\ m_{12}=1.362 \, \mathrm{kg}, \,m_{13}=32.697 \, \mathrm{kg}, \,m_{14}=5.470 \, \mathrm{kg}, \\ m_{15}=5.297 \, \mathrm{kg}, \,m_{16}=2.002 \, \mathrm{kg}, \, m_{17}=4.806 \, \mathrm{kg}, \\ m_{18}=1.084 \, \mathrm{kg}, \, m_{19}=5.445 \, \mathrm{kg}\\ k_{9}=25016 \,\mathrm{N/m}, k_{10}=k_{11}=k_{12}=k_{1317}=877 \,\mathrm{N/m}, \\ k_{1312}=52621 \,\mathrm{N/m}, \, k_{14}=k_{15}=67542 \,\mathrm{N/m},\\ k_{16}=k_{17}=k_{18}=k_{19}=52621 \,\mathrm{N/m}\\ c_{9}=370.8 \,\mathrm{N\,s/m},c_{10}=c_{11}=c_{12}=292.3 \,\mathrm{N\,s/m}, \\ c_{1317}=3581.6 \,\mathrm{N\,s/m} c_{1312}=292.3 \,\mathrm{N\,s/m},\\ c_{14}=c_{15}=c_{16}=c_{17}=c_{18}=c_{19}=3581.6 \,\mathrm{N\,s/m}\\ \end{array}$$

1.5 A.5 Dry friction Parameters

$$\begin{aligned} R=22N, \epsilon =0.0012m/s, n=3 \end{aligned}$$

1.6 A.6 Car chassis corners vertical displacement

$$\begin{aligned} x_1=y_6+a\sin y_8-c\sin y_9 \\ x_2=y_6+a\sin y_8+d\sin y_9 \\ x_3=y_6-b\sin y_8-c\sin y_9 \\ x_4=y_6-b\sin y_8+d\sin y_9 \\ \end{aligned}$$

Appendix B

1.1 B.1 Vertical displacement and ITAE comparison

See Figs. 13, 14, 15, and 16.

Fig. 13
figure 13

Vertical displacements (without seat control)

Fig. 14
figure 14

ITAE vertical displacements (without seat control)

Fig. 15
figure 15

Vertical displacements (with seat control)

Fig. 16
figure 16

ITAE vertical displacements (with seat control)

1.2 B.2 Vertical weighted RMS acceleration and ITAE comparison

See Figs. 17, 18, 19, and 20.

Fig. 17
figure 17

Vertical weighted RMS acceleration (without seat control)

Fig. 18
figure 18

ITAE vertical weighted RMS acceleration (without seat control)

Fig. 19
figure 19

Vertical weighted RMS acceleration (with seat control)

Fig. 20
figure 20

ITAE vertical weighted RMS acceleration (with seat control)

1.3 B.3 Suspension travel

See Figs. 21 and 22.

Fig. 21
figure 21

Suspension travel (without seat control) a front left, b rear right, c rear left

Fig. 22
figure 22

Suspension travel (with seat control) a front left, b rear right, c rear left

1.4 B.4 Tire deflection

See Figs. 23 and 24.

Fig. 23
figure 23

Wheels deflection (without seat control) a front left, b rear right, c rear left

Fig. 24
figure 24

Wheels deflection (with seat control) a front left, b rear right, c rear left

1.5 B.5 RMS vertical acceleration versus frequency

See Figs. 25 and 26.

Fig. 25
figure 25

RMS acceleration versus frequency (without seat control)

Fig. 26
figure 26

RMS acceleration versus frequency (with seat control)

1.6 B.6 Tables

See Tables 2, 3, and 4.

Table 2 Performance comparison of the ITAE vertical displacement of body organs
Table 3 Performance Comparison of the weighted rms acceleration of body organs
Table 4 Performance Comparison of the ITAE weighted rms acceleration of body organs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Khan, L. Adaptive soft computing paradigm for a full-car active suspension system with driver biodynamic vibration damping control. J Braz. Soc. Mech. Sci. Eng. 39, 4305–4333 (2017). https://doi.org/10.1007/s40430-017-0827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0827-4

Keywords

Navigation