Skip to main content
Log in

Modeling the coupled effects of surface layer and size effect on the static and dynamic instability of narrow nano-bridge structure

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

For modeling the electromechanical behavior of nano-bridge structures with slender narrow-width beam elements, not only the simultaneous effects of surface layer and size dependency should be taken into account but also corrected force models should be considered. In this paper, the instability of a narrow-width nano-bridge is studied based on strain gradient theory and Gurtin–Murdoch surface elasticity. The mid-plane stretching is incorporated in the governing equation as well as corrected force distribution. Using Rayleigh–Ritz method, a parametric analysis is conducted to examine the impacts of surface layer, size dependence, dispersion forces and structural damping on static and dynamic instability voltage of the nano-bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rieth M, Schommers W (2006) Handbook of theoretical and computational nanotechnology.American Scientific Publishers, Los Angeles

  2. Sedighi HM, Shirazi KH (2013) Vibrations of micro-beams actuated by an electric field via parameter expansion method. Acta Astronaut 85:19–24

    Article  Google Scholar 

  3. Duan JS, Rach R (2013) A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects. Int J Solids Struct 50:3511–3518

    Article  Google Scholar 

  4. Muñoz-Gamarra JL, Alcaine P, Marigó E, Giner J, Uranga A, Esteve J, Barniol N (2013) Integration of NEMS resonators in a 65 nm CMOS technology. Microelectron Eng 110:246–249

    Article  Google Scholar 

  5. Dragoman M, Dragoman D, Coccetti F, Plana R, Muller AA (2009) Microwave switches based on graphene. J Appl Phys 105:054309

    Article  Google Scholar 

  6. Uranga A, Verd J, Marigó E, Giner J, Muñóz-Gamarra JL, Barniol N (2013) Exploitation of non-linearities in CMOS-NEMS electrostatic resonators for mechanical memories. Sens Actuators A 197:88–95

    Article  Google Scholar 

  7. Hierold C, Jungen A, Stampfer C, Helbling T (2007) Nano electromechanical sensors based on carbon nanotubes. Sens Actuators A 136:51–61

    Article  Google Scholar 

  8. Osterberg GPM (2007) Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. Microelectromechanical Syst J 16:1334–1340

    Article  Google Scholar 

  9. Beni YT, Koochi A, Abadyan M (2011) Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E 43:979–988

    Article  Google Scholar 

  10. Noghrehabadi A, Beni YT, Koochi A, Kazemi AS, Yekrangi A, Abadyan M, Abadi MN (2011) Closed-form approximations of the pull-in parameters and stress field of electrostatic cantilever nano-actuators considering van der Waals attraction. Procedia Eng 10:3750–3756

    Article  Google Scholar 

  11. Mobki H, Rezazadeh G, Sadeghi M, Vakili-Tahami F, Seyyed-Fakhrabadi MM (2013) A comprehensive study of stability in an electro-statically actuated micro-beam. Int J Non-Linear Mech 48:78–85

    Article  Google Scholar 

  12. Koochi A, Hosseini-Toudeshky H (2015) Coupled effect of surface energy and size effect on the static and dynamic pull-in instability of narrow nano-switches. Int J Appl Mech 7(4):1550064

    Article  Google Scholar 

  13. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  14. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  15. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060–1070

    Article  Google Scholar 

  16. Chong ACM, Lam DCC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14(10):4103–4110

    Article  Google Scholar 

  17. Al-Rub RKA, Voyiadjis GZ (2004) Determination of the material intrinsic length scale of gradient plasticity theory. Int J Multiscale Comput Eng 2(3):377–400

    Article  Google Scholar 

  18. Wang W, Huang Y, Hsia KJ, Hu KX, Chandra A (2003) A study of microbend test by strain gradient plasticity. Int J Plast 19:365–382

    Article  MATH  Google Scholar 

  19. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MathSciNet  MATH  Google Scholar 

  20. Ejike UB (1969) The plane circular crack problem in the linearized couple-stress theory. Int J Eng Sci 7:947–961

    Article  MATH  Google Scholar 

  21. Kong S (2013) Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl Math Model 37:7481–7488

    Article  MathSciNet  Google Scholar 

  22. Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  23. Wang B, Zhou S, Zhao J, Chen X (2012) Pull-in instability of circular plate mems: a new model based on strain gradient elasticity theory. Int J Appl Mech 4:1250003

    Article  Google Scholar 

  24. Ansari R, Gholami R, Mohammadi V, Shojaei MF (2013) Size-dependent pull-in instability of hydrostatically and electrostatically actuated circular microplates. J Comput Nonlinear Dyn 8:021015

    Article  Google Scholar 

  25. Mohammadi V, Ansari R, Shojaei MF, Gholami R, Sahmani S (2013) Size-dependent dynamic pull-in instability of hydrostatically and electrostatically actuated circular microplates. Nonlinear Dyn 73:1515–1526

    Article  MathSciNet  Google Scholar 

  26. Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47:487–498

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang B, Zhao J, Zhou S (2010) A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur J Mech A/Solids 29:591–599

    Article  Google Scholar 

  28. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57:291–323

    Article  MathSciNet  MATH  Google Scholar 

  29. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  30. Wang GF, Feng XQ (2009) Surface effects on buckling of nanowires under uniaxial compression. Appl Phys Lett 94:141913

    Article  Google Scholar 

  31. He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802

    Article  Google Scholar 

  32. Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22:245703

    Article  Google Scholar 

  33. Liu C, Rajapakse RKND (2010) Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans Nanotechnol 9(4):422–431

    Article  Google Scholar 

  34. Fu Y, Zhang J (2011) Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl Math Model 35:941–951

    Article  MathSciNet  Google Scholar 

  35. Ma JB, Jiang L, Asokanthan SF (2010) Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology 21:505708

    Article  Google Scholar 

  36. Koochi A, Hosseini-Toudeshky H, Ovesy HR, Abadyan M (2013) Modeling the influence of surface effect on instability of nano-cantilever in presence of van der Waals force. Int J Struct Stab Dyn 13:1250072

    Article  Google Scholar 

  37. Koochi A, Kazemi A, Khandani F, Abadyan M (2012) Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Phys Scr 85:035804

    Article  MATH  Google Scholar 

  38. Rokni H, Lu W (2013) A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects. J Appl Phys 113:153512

    Article  Google Scholar 

  39. Ansari R, Sahmani S (2011) Surface stress effects on the free vibration behavior of nanoplates. Int J Eng Sci 49:1204–1215

    Article  MathSciNet  Google Scholar 

  40. Gao XL, Mahmoud FF (2014) A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Z Angew Math Phys 65:393–404

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou S, Gao XL (2013) Solutions of half-space and half-plane contact problems based on surface elasticity. Z Angew Math Phys 64:145–166

    Article  MathSciNet  MATH  Google Scholar 

  42. Dym CL, Shames IH (1984) Solid mechanics: a variational approach. Railway Publishing House, Beijing

    MATH  Google Scholar 

  43. Batra RC, Porfiri M, Spinello D (2006) Electromechanical model of electrically actuated narrow microbeams. Microelectromechanical Systems, Journal of 15:1175–1189

    Article  Google Scholar 

  44. Klimchitskaya GL, Mohideen U, Mostepanenko VM (2000) Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys Rev A 61:062107

    Article  Google Scholar 

  45. Boström M, Sernelius BE (2000) Fractional van der Waals interaction between thin metallic films. Phys Rev B 61:2204

    Article  Google Scholar 

  46. Israelachvili JN, Tabor DRFS (1972) The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 331, No. 1584, p 19–38

  47. Gies H, Klingmüller K (2006) Casimir edge effects. Phys Rev Lett 97:220405

    Article  Google Scholar 

  48. Lennard-Jones JE (1930) Perturbation problems in quantum mechanics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 598-615

  49. Wang KF, Wang BL (2014) Influence of surface energy on the non-linear pull-in instability of nano-switches. Int J Non-Linear Mech 59:69–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Koochi.

Additional information

Technical Editor: Marcelo A. Savi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keivani, M., Koochi, A., Kanani, A. et al. Modeling the coupled effects of surface layer and size effect on the static and dynamic instability of narrow nano-bridge structure. J Braz. Soc. Mech. Sci. Eng. 39, 1735–1744 (2017). https://doi.org/10.1007/s40430-016-0644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0644-1

Keywords

Navigation