Skip to main content

Advertisement

Log in

Mitigating effects of acetylcholine supply on soybean seed germination under osmotic stress

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Acetylcholine (Ach) is a common neurotransmitter in animals, also synthesized in plants, which can have an influence on plant response to stress, also acting as a signaling molecule between root and shoot. The objective of this study was to analyze the possible mitigating effects of exogenous application of Ach on soybean germination under different levels of osmotic potential. The experiments were conducted with soybean [Glycine max (L.) Merrill] genotype Intacta. The seeds were first treated with Ach solutions with the following concentrations: 0.0 (control); 0.5; 1. 0 and 2.0 mM. Then, the seeds were subjected to two water potentials, −0.5 and −1.0 MPa, reached by using mannitol solutions, for the induction of osmotic stress, and a control condition with distilled water. Thus, 12 treatments were established in a double factorial 4 × 3, with 4 levels of Ach and 3 osmotic potential treatments (0.0, −0.5 and −1.0 MPa) with four replicates per treatment. The results showed that the concentration of 1.0 mM Ach, without osmotic stress, presented higher values for total dry mass of the seedlings compared to the control treatment (without Ach supply). In the treatments conducted to test the effectiveness of Ach on the mitigation of severe osmotic stress effects (−1.0 MPa), results showed that the concentration of 0.5 mM Ach showed positive results for the following parameters; dry weight of shoot, root dry weight, total dry mass, which were significantly higher than treatment under 1.0 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avila MR, Braccini AL, Scapim CA, Fagliari JR, Santos JL (2007) Influência do estresse hídrico simulado com manitol na germinação de sementes e crescimento de plântulas de canola. Rev bras sementes 29:98–106

    Article  Google Scholar 

  • Balardin RS, Silva FD, Debona D, Corte GD, Favera DD, Tormen NR (2011) Seed treatment with fungicides and insecticides as reducing the effects of water stress in soybean plants. Rural Sci 41:1120–1126

    Article  CAS  Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  CAS  PubMed  Google Scholar 

  • Bamel K, Gupta SC, Gupta R (2007) Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings. Life Sci 80:2393–2396

    Article  CAS  PubMed  Google Scholar 

  • Barzotto F, Facco L, Mattioni N, Farias JG, Segalin S (2012) Soybean cultivars response to germination under optimal sub-zero temperatures. Federal University of Santa Maria. http://www.unifra.br/eventos/sepe2012/Trabalhos/5625.pdf. Accessed 12 Feb 2015

  • Blusztajn JK, Liscovitch M, Richardson UI, Wurtman RJ (1987) Phosphatidylcholine as a precursor of choline for acetylcholine synthesis. In: Dawdall MJ, Hawthorne JN (eds) Cellular and molecular basis of cholinergic function. Ellis Horwood, Chichester, pp 341–346

    Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite. Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Brasil (2009) Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento, Brasília. http://www.agricultura.gov.br/arq_editor/file/2946_regras_analise__sementes.pdf. Acessed 14 Feb 2014

  • Caderas D, Muster M, Vogler H, Mandel T, Rose JKC, Mcquenn-Mason S, Kuhlemeier C (2000) Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol 123:1399–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czerpak R, Bajguz A, Jewiec P, Muszynska-Garstka M (2003) The influence of acetylcholine and taurine on the content of some metabolites in the alga Chlorella vulgaris. Ecohydrol Hydrobiol 3:223–229

    CAS  Google Scholar 

  • Daneluzzi GS (2012) Uma abordagem neurofisiológica da acetilcolina em plantas de milho hidratadas e sob condições de estresse hídrico. Dissertação. Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba

  • Di-Sansebastiano GP, Fornaciari S, Barozzi F, Piro G, Arru L (2014) New insights on plant cell elongation: a role for acetylcholine. Int J Mol Sci 15:4565–4582. doi:10.3390/ijms15034565

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong XQ, Bisson MA (2002) Acetylcholine-activated Cl channel in the Charatonoplast. J Membr Biol 188:107–113

    Article  CAS  PubMed  Google Scholar 

  • Hartmann E, Gupta R (1989) Acetylcholine as a signaling system in plants. In: Boss WF, Morré DJ (eds) Second messengers in plant growth and development. A. R. Liss, New York, pp 257–288

    Google Scholar 

  • Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72:1745–1756

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T (1983) Effects of acetylcholine on the growth of the Vigna seedlings. Plant Cell Physiol 24:551–556

    Article  CAS  Google Scholar 

  • Islam MO, Rahim MA, Prodhan AKMA (2010) Flowering pattern, floral abscission and yield attributes in soybean influenced by GABA. J Bangladesh Agric Univ 8:29–33. doi:10.3329/jbau.v8i1.6394

    Article  Google Scholar 

  • Jaffe MJ (1970) Evidence for the regulation of phytochrome-mediated process in bean roots by the neurohumor, acetylcholine. Plant Physiol 46:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostir J, Klenha J, Jiracek V (1965) The effect of acetylcholine on seed germination in agricultural plants. Rost Vyroba. 12:239–279

    Google Scholar 

  • Lawson VR, Brady RM, Campbell A, Know BG, Knox GD, Walls RL (1978) Interaction of acetylcholine chloride with IAA, GA3 and red light in the growth of excised apical coleoptile segments. Bull Torrey Bot Club 105:187–191

    Article  CAS  Google Scholar 

  • Machado JC, Oliveira JA, Vieira MGGC, Alves MC (2001) Inoculação artificial de sementes de soja por fungos, utilizando solução de manitol. Rev bras sementes 23:95–101

    Article  Google Scholar 

  • Maguire JB (1962) Speed of germination-aid in selection and evaluation for seedling emergence vigor. Crop Sci 2:176–177

    Article  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LSP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Maraghni M, Gorai M, Neffati M (2010) Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. S Afr J Bot 76:453–459

    Article  CAS  Google Scholar 

  • Marcos Filho J (2005) Fisiologia de sementes de plantas cultivadas, vol 12. FEALQ, Piracicaba

    Google Scholar 

  • Meng F, Liu X, Zhang S, Lou C (2001) Localization of muscarinic acetylcholine receptor in plants guard cells. Chin Sci Bull 46:586–587. doi:10.1007/BF02900416

    Article  CAS  Google Scholar 

  • Momonoki YS (1997) Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol 114:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momonoki YS, Momonoki T (1993) Changes in acetylcholine-hydrolyzing activity in heat-stressed plant cultivars. Jpn J Crop Sci 62:438–446

    Article  CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Plant Physio 35:299–319

    Article  Google Scholar 

  • Mukherjee I (1980) The effect of acetylcholine on hypocotyl elongation in soybean. Plant Cell Physiol 21:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ (2006) Neurotransmitters, neuroregulators and neurotoxins in the life of plants. Commun Plants. doi:10.1007/978-3-540-28516-8_10

    Google Scholar 

  • Nakagawa J (1999) Teste de Vigor baseados no desempenho das plântulas. In: Krzyzanowski FC, Vieira RD, França-Neto JB (eds) Vigor de Sementes: Conceitos e Testes. ABRATES, Londrina, pp 2–24

    Google Scholar 

  • Paiva R, Oliveira LM (2006) Physiology and plant production. UFLA, Lavras

    Google Scholar 

  • Parsaeimehr A, Sol Z, Dou X, Chen YF (2015) Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine. Biotechnol Biofuels 8:11. doi:10.1186/s13068-015-0196-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Popinigis F (1985) Fisiologia da semente. Ministério da Agricultura - AGIPLAN, Brasília

    Google Scholar 

  • Roschina VV (2001) Neurotransmitters in plant life. Science Publishers, Enfield

    Google Scholar 

  • Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguri S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. a enzyme family in the plant kingdom. Plant Physiol 138:1359–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sediyama T, Teixeira RC, Barros HB (2009) Origem evolução e importância econômica. In: Sediyama T (ed) Tecnologia de produção e usos da soja, Editora Mecenas, Londrina, pp 1–5

  • Sugiyama KI, Tezuka T (2011) Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus. Plant Signal Behav 6:1545–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattini M, Remorini D, Pinelli P, Agati G, Saracini E, Traversi M, Massai R (2006) Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytol 170:779–794

    Article  CAS  PubMed  Google Scholar 

  • Tretyn A (1987) Influence of red light and acetylcholine on Ca2+ uptake by oat coleoptile cells. Cell Biol Int Rep 11:887–896

    Article  CAS  Google Scholar 

  • Tretyn A, Bossen ME, Kendrick RE (1990) The influence of acetylcholine on the swelling of wheat (Tritricum aestivum L.) protoplasts. J Plant Physiol 136:24–29

    Article  CAS  Google Scholar 

  • Wang H, Zhang S, Wang X, Lou C (2003) Involvement of Ca2+ CaM in the signal transduction of acetylcholine-regulating stomatal movement. Chin Sci Bull 48:351–354

    CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154:1558–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Kirpatrick CJ (2001) The biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 85:2–10

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewska J, Tretyn A (2003) Acetylcholinesterase activity in Lycopersicon esculentum and its phytochrome mutants. Plant Physiol Bioch 41:711–717. doi:10.1016/S0981-9428(03)00111-6

    Article  Google Scholar 

  • Xu JG, Hu QP (2014) Changes in γ-aminobutyric acid content and related enzyme activities in Jindou 25 soybean (Glycine max L.) seeds during germination. Lwt Food Sci Technol 55:341–346

    Article  CAS  Google Scholar 

  • Yamamoto K, Momonoki YS (2012) Tissue localization of maize acetylcholinesterase associated with heat tolerance in plants. Plant signal Behav 7:301–305. doi:10.4161/psb.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Oguri S, Chiba S, Momonoki YS (2009) Molecular cloning of acetyl-cholinesterase gene from Salicornia europaea L. Plant Signal Behav 4:361–366. doi:10.4161/Psb.4.5.8360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding Programa Institucional de Bolsas de Iniciação Científica (PIBIC) and Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES). M.D. Pissolato is scholarship PIBIC and I. Braga scholarship of doctorate CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inaê Braga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, I., Pissolato, M.D. & Souza, G.M. Mitigating effects of acetylcholine supply on soybean seed germination under osmotic stress. Braz. J. Bot 40, 617–624 (2017). https://doi.org/10.1007/s40415-017-0367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0367-2

Keywords

Navigation