Skip to main content

Advertisement

Log in

Lichen fungi in the Atlantic rain forest of Northeast Brazil: the relationship of species richness with habitat diversity and conservation status

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Although lichens develop their highest biomass in cool-temperate climates, lichen fungi may form highly diverse assemblages in tropical lowland rain forests. The reasons for such high species richness are not well known. The present study tested the hypothesis that lichen diversity in the northern Atlantic rain forest mainly depends on habitat diversity and conservation status of forest fragments. To this end, the known lichen biota of 23 forest remnants in the region was analyzed. We identified 784 species, with 11 taxa newly reported from Brazil and 44 from Bahia. The vast majority (711) are principally corticolous, while 53 are saxicolous and 20 terricolous. The most frequent species in terms of site occurrence were found at 13 sites, whereas over half of the taxa (462) were only found at a single site. This coincides with an overall low average sampling score, with only six sites being moderately well to well sampled. The number of species per site varied between 5 and 371. Multiple linear regression of species richness with the parameters, site extension, habitat diversity, sampling effort, conservation status, and elevation, was strong and highly significant, with site extension, habitat diversity, and sampling effort being the best predictors for species richness. Site ordination based on species composition suggested a correlation with conservation status and species richness, as well as site extension and habitat diversity. There was no overall correlation between species composition and geographical location of sites along a north–south gradient, but an underlying pattern was detected, suggesting some species turnover along a macroecological gradient. A predictive model using a combined score from the five parameters resulted in a strong and highly significant linear correlation with observed species richness. Using a quantitative, site-based method, we predicted a minimum of 44 and a maximum of 583 species per studied site and we estimated the overall richness for the northern Atlantic rain forest to be 1017 species. Traditional estimators (Chao 1, Chao 2, Jackknife 1, Jackknife 2, Bootstrap) resulted in predicted values ranging between 971 and 1527 species overall. The results of the study are relevant for conservation priorities, as they show that well-conserved areas with a higher habitat diversity (e.g., including transitional forest types and open areas) are an important component preserving the original diversity of the Atlantic Rain Forest, accounting for a large part of the extant biodiversity of this biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahti T (2000) Cladoniaceae. Fl Neotrop Monogr 78:1–362

    Google Scholar 

  • Alves MME, Aptroot A, Lacerda SR, Cáceres MES (2014a) Three new Arthoniaceae from Chapada do Araripe, Ceará, NE Brazil. Lichenologist 46:663–667

    Article  Google Scholar 

  • Alves MME, Aptroot A, Lacerda SR, Cáceres MES (2014b) A new Eschatogonia species and two new Gassicurtia species from Chapada do Araripe, Ceará, NE Brazil. Bryologist 117:50–53

    Article  Google Scholar 

  • Anderson AB, Benson WW (1980) On the number of tree species in Amazonian forests. Biotropica 12:235–237

    Article  Google Scholar 

  • Aptroot A (1997) Lichen biodiversity in Papua New Guinea, with the report of 173 species on one tree. Biblioth Lichenol 68:203–213

    Google Scholar 

  • Aptroot A (2002) New and interesting lichens and lichenicolous fungi in Brazil. Fung Div 9:15–45

    Google Scholar 

  • Aptroot A, Menezes AA, Lima EL, Xavier-Leite AB, Cáceres MES (2013) New species of Polymeridium from Brazil expand the range of known morphological variation within the genus. Lichenologist 45:545–552

    Article  Google Scholar 

  • Aptroot A, Mercado-Diaz JA, Bárcenas A, Cáceres MES, Coca LF, Dal-Forno M, Feuerestein SC, Herra-Campos MA, Joshi S, Kirika PM, Kraichak E, Lumbsch HT, Miranda R, Moncada B, Nelsen MP, Pérez-Pérez RE, Scharnagl K, Medina ES, Yánez A, Lücking R (2014a) Rapid assessment of the diversity of “vehiculicolous” lichens on a thirty year old Ford Bronco truck in central Puerto Rico. Fungi Mag 17:24–26

    Google Scholar 

  • Aptroot A, Mendonça CO, Ferraro LI, Cáceres MES (2014b) A world key to species of the genera Topelia and Thelopsis (Stictidaceae), with the description of three new species from Brazil and Argentina. Lichenologist 46:801–807

    Article  Google Scholar 

  • Aptroot A, Menezes AA, Xavier-Leite AB, Dos Santos VM, Alves MME, Cáceres MES (2014c) Revision of the corticolous Mazosia species, with a key to Mazosia species with 3-septate ascospores. Lichenologist 46:563–572

    Article  Google Scholar 

  • Ardila Rios AI, Moncada B, Lücking R (2015) Epiphyte homogenization and de-diversification on alien Eucalyptus versus native Quercus forest in the Colombian Andes: a case study using lirellate Graphidaceae lichens. Biodiv Cons 24:1239 (in press)

  • Armstrong RA (1988) Substrate colonization, growth, and competition. In: Galun M (ed) CRC handbook of lichenology, vol II. CRC Press Inc, Boca Raton, pp 3–16

    Google Scholar 

  • Benatti MN, Marcelli MP (2007) Gêneros de fungos liquenizados dos manguezais do Sul-Sudeste do Brasil, com enfoque no manguezal do Rio Itanhaém, Estado de São Paulo. Acta Bot Bras 21:863–878

    Article  Google Scholar 

  • Benner JW, Vitousek PM (2012) Cyanolichens: a link between the phosphorus and nitrogen cycles in a Hawaiian montane forest. J Trop Ecol 28:73–81

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Cons Biol 16:909–923

    Article  Google Scholar 

  • Cáceres MES (2007) Corticolous crustose and microfoliose lichens of northeastern Brazil. Libri Bot 22:1–168

    Google Scholar 

  • Cáceres MES, Lücking R (2013) Acanthothecis sarcographoides (Ascomycota: Graphidaceae), a morphologically unique, new lichen species from the Atlantic Forest in northeastern Brazil. Acta Bot Bras 27:472–475

    Article  Google Scholar 

  • Cáceres MES, Maia LC, Lücking R (2000) Foliicolous lichens and their lichenicolous fungi in the Atlantic rainforest of Brazil: diversity, ecogeography and conservation. Biblioth Lichenol 75:47–70

    Google Scholar 

  • Cáceres MES, Lücking R, Rambold G (2007) Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rainforest of northeastern Brazil. Mycol Progr 6:117–136

    Article  Google Scholar 

  • Cáceres MES, Lücking R, Rambold G (2008a) Corticolous microlichens in northeastern Brazil: habitat differentiation between coastal Mata Atlântica, Caatinga and Brejos de Altitude. Bryologist 111:98–117

    Article  Google Scholar 

  • Cáceres MES, Lücking R, Rambold G (2008b) Efficiency of sampling methods for accurate estimation of species richness of corticolous microlichens in the Atlantic rainforest of northeastern Brazil. Biodiv Cons 17:1285–1301

    Article  Google Scholar 

  • Cáceres MES, Aptroot A, Nelsen MP, Lücking R (2013a) Pyrenula sanguinea (lichenized Ascomycota: Pyrenulaceae), a new species with unique, trypethelioid ascomata and complex pigment chemistry. The Bryologist 116:350–357

    Article  Google Scholar 

  • Cáceres MES, Andrade DS, Océa GK, Aptroot A (2013b) A new Eugeniella from a small Atlantic rainforest remnant in Sergipe, NE Brazil. Lichenologist 45:367–369

    Article  Google Scholar 

  • Cáceres MES, Dos Santos MWO, Mendonça CO, Mota DA, Aptroot A (2013c) New lichen species of the genera Porina and Byssoloma from an urban Atlantic rainforest patch in Sergipe, NE Brazil. Lichenologist 45:379–382

    Article  Google Scholar 

  • Cáceres MES, Dos Santos VM, Góes DT, Mota DA, Aptroot A (2013d) Two new species of Malmidea from north-eastern Brazil. Lichenologist 45:619–622

    Article  Google Scholar 

  • Cáceres MES, Aptroot A, Parnmen S, Lücking R (2014) Remarkable diversity of the lichen family Graphidaceae in the Amazon rain forest of Rondônia, Brazil. Phytotaxa 189:87–136

    Article  Google Scholar 

  • Canseco A, Anze R, Franken M (2006) Comunidades de líquenes: indicadores de la calidad del aire en la ciudad de La Paz, Bolivia. Acta Nova 3:286–307

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecol 85:2717–2727

    Article  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5:3–21

    Article  Google Scholar 

  • Dafonseca G (1985) The vanishing Brazilian Atlantic forest. Biol Cons 34:17–34

    Article  Google Scholar 

  • Elix JA, Stocker-Wörgötter E (2008) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 104–133

    Chapter  Google Scholar 

  • Ewers RM, Banks-Leite C (2013) Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 8(3):e58093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas EE, Elix JA, Flakus A (2012) Calopadia erythrocephala, a new foliicolous lichenized fungus from Brazil. Lichenologist 44:395–399

    Article  Google Scholar 

  • Flakus A (2013) Foliicolous lichenized fungi of lowland Amazon forests in Pando, Bolivia. Pol Bot J 58:539–554

    Google Scholar 

  • Fonseca CR, Grande G, Baldissera R, Becker CG, Boelter CR, Brescovit AD, Campos LM, Fleck T, Fonseca VS, Hartz SM, Joner F, Käffer MI, Leal-Zanchet AM, Marcelli MP, Mesquita AS, Mondin CA, Paz CP, Petry MV, Piovensan EN, Putzke J, Stranz A, Vergara M, Vieira EM (2009) Towards an ecologically-sustainable forestry in the Atlantic Forest. Biol Cons 142:1209–1219

    Article  Google Scholar 

  • Fritz-Sheridan RP (1988) Nitrogen fixation on a tropical volcano, La Soufriere: nitrogen fixation by the pioneer lichen Dictyonema glabratum. Lichenologist 20:96–100

    Article  Google Scholar 

  • Galindo Leal C, Gusmão Câmara I (2003) The Atlantic forest of South America: biodiversity status, threats, and outlook. Island Press, Washington

    Google Scholar 

  • Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Nat Acad Sci 85:156–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert OL (2000) Lichens. Harper Collins, London

    Google Scholar 

  • Guderley R, Lumbsch HT, Elix JA (2000) Four new species of Lecanora sensu stricto (Lecanorales, Ascomycotina) from tropical South America. Bryologist 103:139–144

    Article  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Book  Google Scholar 

  • Käffer MI, Martins SMDA, Alves C, Pereira VC, Fachel J, Vargas VMF (2011) Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecol Indic 11:1319–1332

    Article  Google Scholar 

  • Kalb K (2004) New or otherwise interesting lichens II. Bibl Lichenol 88:301–329

    Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) CRC handbook of lichenology, vol II. CRC Press Inc, Boca Raton, pp 37–100

    Google Scholar 

  • Kranner I, Beckett RP, Varma AK (eds) (2002) Protocols in lichenology. Culturing, biochemistry, ecophysiology and use in biomonitoring. Springer, Berlin

    Google Scholar 

  • Longton RE (1992) The role of bryophytes and lichens in terrestrial ecosystems. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 32–76

    Google Scholar 

  • Lücking R (2008) Foliicolous lichenized fungi. Fl Neotrop. Monogr 103:1–867

    Google Scholar 

  • Lücking R (2015) Thelotremoid Graphidaceae from the NYBG herbarium: New species, range extensions, and a forgotten lichen. Opusc Philolich 14:1 (in press)

  • Lücking R, Cáceres MES (2004) Corticolous species of Trichothelium (Ascomycota: Porinaceae). Mycol Res 108:571–575

    Article  PubMed  Google Scholar 

  • Lücking R, Kalb K (2000) Foliikole Flechten aus Brasilien (vornehmlich Amazonien), inklusive einer Checkliste und Bemerkungen zu Coenogonium und Dimerella (Gyalectaceae). Bot Jahrb 122(1):1–61

    Google Scholar 

  • Lücking R, Lumbsch HT (2014) Lichens: fungal farmers. Fungi Mag 7(2–3):7–12

    Google Scholar 

  • Lücking R, Matzer M (2001) High foliicolous lichen alpha-diversity on individual leaves in Costa Rica and Amazonian Ecuador. Biodiv Cons 10:2139–2152

    Article  Google Scholar 

  • Lücking R, Rivas-Plata E, Chavez JL, Umaña L, Sipman HJM (2009) How many tropical lichens there are… really? Bibl Lichenol 100:399–418

    Google Scholar 

  • Lücking R, Seavey F, Common RS, Beeching SQ, Breuss O, Buck WR, Crane L, Hodges M, Hodkinson BP, Lay E, Lendemer JC, McMullin RT, Mercado-Díaz JA, Nelsen MP, Rivas Plata E, Safranek W, Sanders WB, Schaefer HP Jr, Seavey J (2011) The lichens of Fakahatchee Strand Preserve State Park, Florida: proceedings from the 18th Tuckerman Workshop. Bull Florida Mus Nat Hist Biol Sci 49:127–186

    Google Scholar 

  • Lücking R, Hernández JEM, Kalb K, Rivas Plata E (2012) Tres nuevas especies de Graphida-ceae de Venezuela. Glalia 4:1–7

    Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yánez A, Chaves JL, Coca LF, Lawrey JD (2014a) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci USA 111:11091–11096

    Article  PubMed  PubMed Central  Google Scholar 

  • Lücking R, Johnston MK, Aptroot A, Kraichak E, Lendemer JC, Boonpragob K, Cáceres MES, Ertz D, Ferraro LI, Jia Z-F, Kalb K, Mangold A, Manoch L, Mercado-Díaz JA, Moncada B, Mongkolsuk P, Papong K, Parnmen S, Peláez RN, Poengsungnoen V, Rivas Plata E, Saipunkaew W, Sipman HJM, Sutjaritturakan J, Van den Broeck D, Von Konrat M, Weerakoon G, Lumbsch HT (2014b) One hundred and seventy five new species of Graphidaceae: closing the gap or a drop in the bucket? Phytotaxa 189:7–38

    Article  Google Scholar 

  • Maia LC, Carvalho Jr AA (2015) Fungi in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://www.floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB128473. Accessed 17 Jan 2015

  • Malme GOA (1924) Die Flechten der ersten Regnellschen Expedition. 2. Astrotheliaceae, Paratheliaceae und Trypetheliaceae. Ark Bot 19:1–34

    Google Scholar 

  • Malme GOA (1934) Die Ramalinen der ersten Regnellschen Expedition. Ark Bot 26A:1–9, 2 plates

    Google Scholar 

  • Malme GOA (1935) Bacidiae itineris Regnelliani primi. Ark Bot 27:1–40

    Google Scholar 

  • Marbach B (2000) Corticole und lignicole Arten der Flechtengattung Buellia sensu lato in den Subtropen und Tropen. Bibl Lichenol 74:1–384

    Google Scholar 

  • Marcelli MP (1998) History and current knowledge of Brazilian lichenology. In: Marcelli MP, Seaward MRD (eds) Lichenology in Latin America: history, current knowledge and applications. CETESB, Companhia de Tecnologia de Saneamento Ambiental, São Paulo, pp 25–45

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD multivariate analysis of ecological data, version 4.0. MjM Software, Gleneden Beach

    Google Scholar 

  • Menezes AA, Xavier-Leite AB, Otsuka AY, Jesus LS, Cáceres MES (2011) New records of crustose and microfoliose corticicolous lichens in Caatinga vegetation of the semi-arid region in Alagoas. Acta Bot Bras 25:885–889

    Article  Google Scholar 

  • Metzger JP (2009) Conservation issues in the Brazilian Atlantic forest. Biol Cons 142:1138–1140

    Article  Google Scholar 

  • Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Teixeira AMG, Pardini R (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177

    Article  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2004) Hotspots revisited. CEMEX, Mexico City

    Google Scholar 

  • Monge-Nájera J, González MI, Rossi MR, Méndez-Estrada VH (2002) Twenty years of lichen cover change in a tropical habitat (Costa Rica) and its relation with air pollution. Rev Biol Trop 50:309–319

    PubMed  Google Scholar 

  • Nash TH III (ed) (2008a) Lichen biology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Nash TH III (2008b) Nutrients, elemental accumulation, and mineral cycling. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 234–251

    Chapter  Google Scholar 

  • Nash TH III (2008c) Lichen sensitivity to air pollution. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 299–314

    Chapter  Google Scholar 

  • Nash TH III (2008d) Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 216–233

    Chapter  Google Scholar 

  • Oliveira AA, Mori SA (1999) A central Amazonian terra firme forest. I. High tree species richness on poor soils. Biodiv Conserv 8:1219–1244

    Article  Google Scholar 

  • Purvis W (2000) Lichens. Natural history museum. London and Smithsonian Institution, Washington DC

    Google Scholar 

  • Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Mod 222:1986–1997

    Article  Google Scholar 

  • Radies D, Coxson D, Johnson C, Konwicki K (2009) Predicting canopy macrolichen diversity and abundance within old-growth inland temperate rainforests. Forest Ecol Manag 259:86–97

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Cons 142:1141–1153

    Article  Google Scholar 

  • Rivas Plata E, Lücking R (2013) High diversity of Graphidaceae (lichenized Ascomycota: Ostropales) in Amazonian Perú. Fung Div 58:13–32

    Article  Google Scholar 

  • Rivas Plata E, Lücking R, Lumbsch HT (2008) When family matters: an analysis of Thelotremataceae (Lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodiv Conserv 17:1319–1351

    Article  Google Scholar 

  • Saatchi S, Agosti D, Alger K, Delabie J, Musinsky J (2001) Examining fragmentation and loss of primary forest in the southern Bahian Atlantic forest of Brazil with radar imagery. Conserv Biol 15:867–875

    Article  Google Scholar 

  • Seaward MRD (2008) Environmental role of lichens. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 274–298

    Chapter  Google Scholar 

  • Sipman HJM, Aptroot A (2001) Where are the missing lichens? Mycol Res 105:1433–1439

    Article  Google Scholar 

  • Sipman HJM, Harris RC (1989) Lichens. In: Lieth H, Werger MJA (eds) Tropical rain forest ecosystems. Elsevier Science Publishers B.V, Amsterdam, pp 303–309

    Chapter  Google Scholar 

  • Staiger B (2002) Die Flechtenfamilie Graphidaceae. Studien in Richtung einer natürlicheren Gliederung. Bibl Lichenol 85:1–526

    Google Scholar 

  • Tabarelli M, Pinto LP, Silva JMC, Hirota M, Bedê L (2005) Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic forest. Conserv Biol 19:695–700

    Article  Google Scholar 

  • Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340

    Article  Google Scholar 

  • Thomas WW, Britton EG (2008) The Atlantic Coastal Forest of Northeastern Brazil. The New York Botanical Garden Press, Bronx

    Google Scholar 

  • Thomas WW, Carvalho AMV (1997) Atlantic moist forest of Southern Bahia, south-eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centers of plant diversity: a guide and strategy for their conservation, The Americas. WWF and IUCN, London, pp 364–368

  • Vainio EA (1890) Étude sur la classification et la morphologie des lichens du Brésil, I. Acta Soc Fauna Fl Fenn 7:1–247

    Google Scholar 

  • Valencia R, Balslev H, Paz y Mino G (1994) High tree alpha-diversity in Amazonian Ecuador. Biodiv Conserv 3:21–28

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Xavier-Leite AB, Menezes AA, Aptroot A, Cáceres MES (2014) Coenogonium chloroticum (Ascomycota: Coenogoniaceae), a new corticolous lichen species from Mata do Pau-Ferro, in Paraíba, NE Brazil. Nova Hedwigia 98:197–200

    Article  Google Scholar 

Download references

Acknowledgments

The CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) is thanked for the financial support to MESC for the collecting trips (Sisbiota Brasil Process 563.342/2010-2) and research grant (Process 311706/2012-6). Data obtained for this study were also gathered as part of several projects funded by the National Science Foundation: Neotropical Epiphytic MicrolichensAn Innovative Inventory of a Highly Diverse yet Little Known Group of Symbiotic Organisms (DEB 715660 to The Field Museum; PI R. Lücking), and ATMAssembling a taxonomic monograph: The lichen family Graphidaceae (DEB-1025861 to The Field Museum; PI T. Lumbsch, CoPI R. Lücking).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Eugenia da Silva Cáceres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cáceres, M.E.d., Aptroot, A. & Lücking, R. Lichen fungi in the Atlantic rain forest of Northeast Brazil: the relationship of species richness with habitat diversity and conservation status. Braz. J. Bot 40, 145–156 (2017). https://doi.org/10.1007/s40415-016-0323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0323-6

Keywords

Navigation