Skip to main content

Advertisement

Log in

The epiphytic lichen biota of Caucasian virgin forests: a comparator for European conservation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The north-western Caucasus is exceptional in Europe because of its 1.3 million hectares of unmanaged ‘virgin’ forest. The Caucasus State Nature Reserve protects some 200,000 hectares, but contiguous areas are exposed to forest loss, fragmentation and degradation. Such an extensive region of virgin forest provides a unique opportunity to document diversity along key ecological gradients for an undisturbed system in Europe. Focusing on lichen epiphytes, we surveyed local diversity hot-spots along a 1200 m altitudinal gradient. Our main results are that: (a) species richness is enormously high in 1-hectare plots (between 233 and 358) representing a new baseline for Europe, (b) species composition differs substantially among plots with turnover increasing for difference in altitude. Cumulative species richness along the gradient was 597. More than a half of detected species had an affinity for, or were restricted to either the lower or the uppermost parts of the altitudinal gradient. However, this was related to differences in forest structure, rather than altitude per se. Species richness in plots increased significantly with the proportion of sparse/open forest. Length of an ecotone line, number of available tree and shrub species and number of dominant tree species also tend to increase species richness. These four variables had higher values at the lower and upper parts of the gradient, than at mid-altitudes, explaining a bimodal relationship of species richness with altitude. We conclude that loss of forest habitat at the lower and upper margins of the altitudinal gradient will cause the most significant decline in epiphytic lichen diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akatov PV (2009) Changes in the upper limits of tree species distribution in the Western Caucasus (Belaya River Basin) related to recent climate warming. Rus J Ecol 40:33–38

    Article  Google Scholar 

  • Baniya CB, Solhøy T, Gauslaa Y, Palmer MW (2010) The elevation gradient of lichen species richness in Nepal. Lichenologist 42:83–96

    Article  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Corcum & Comp, N.V.

    Google Scholar 

  • Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J, Rafiqpoor MD, Sommer H (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Bässler C, Cadotte MW, Beudert B, Heibl C, Blaschke M, Bradtka JH, Langbehn T, Werth S, Müller J (2016) Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39:689–698

    Article  Google Scholar 

  • Berger F, Breuss O, Maliček J, Türk R (2018) Lichens in the primeval forest areas ‘Größer Urwald’ and ‘Kleiner Urwald’ (Rothwald, ‘Dürrenstein Wilderness Area’, Lower Austria, Austria). Herzogia 31:716–731

    Article  Google Scholar 

  • Bidussi M, Solhaug KA, Gauslaa Y (2016) Increased snow accumulation reduces survival and growth in dominant mat-forming arctic-alpine lichens. Lichenologist 48:237–247

    Article  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738

    Article  CAS  Google Scholar 

  • Burnham KP, Overton WS (1978) Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65:625–633

    Article  Google Scholar 

  • Cayuela L, Golicherm DJ, Benayas JMR, González-Espinosa M, Ramírez-Marcial N (2006) Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J Appl Ecol 43:1172–1181

    Article  Google Scholar 

  • Černý T et al (2013) Environmental correlates of plant diversity in Korean temperate forests. Acta Oecologica 47:37–45

    Article  Google Scholar 

  • Cezanne R, Eichler M, Hohmann M-L, Wirth V (2008) Die Flechten des Odenwaldes [The lichens of Odenwald]. Andrias 17:1–520

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Cieśliński S (2003) Atlas rozmieszczenia porostów (Lichenes) w Polsce Północno-Wschodniej. Phytocoen, Suppl Cartogr Geobot 15:1–430

    Google Scholar 

  • Commarmot B, Brändli U-B, Hamor F, Lavnyy V (2013) Inventory of the largest primeval beech forest in Europe–a Swiss-Ukrainian scientific adventure. WSL Swiss Federal Research Institute, Birmensdorf

    Google Scholar 

  • Core Team R (2016) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ellis CJ, Yahr R, Coppins BJ (2011) Archaeobotanical evidence for a massive loss of epiphyte species richness during industrialization in southern England. Proc Roy Soc B 278:3482–3489

    Article  CAS  Google Scholar 

  • Ellis CJ, Eaton S, Theodoropoulos M, Elliott K (2015) Epiphyte communities and indicator species. An Ecological Guide for Scotland’s Woodlands, Royal Botanic Garden Edinburgh

    Google Scholar 

  • Ellis CJ, Yahr R, Coppins BJ (2018) Quantifying the anthropocene loss of bioindicators for an early industrial region: an equitable baseline for biodiversity restoration. Biodivers Conserv 27:2363–2377

    Article  Google Scholar 

  • Etayo J (1989) Liquenes epifitos del Norte de Navarra. Tesis Doctoral Univ. Navarra, Pamplona (PhD thesis)

  • Freemark KE, Merriam HG (1986) Importance of area and habitat heterogeneity to bird assemblages in temperate forest fragments. Biol Cons 36:115–141

    Article  Google Scholar 

  • Gignac LD, Dale MRT (2005) Effects of fragment size and habitat heterogeneity on cryptogam diversity in the low-boreal forest of western Canada. Bryologist 108:50–66

    Article  Google Scholar 

  • Gómez-Bolea A (1985) Liqucnes epifitos en Cataluñìa. Resumen Tesis Centre PubI. Univo Barcelona, Barcelona (PhD thesis)

  • Groner U (2016) Flechten und assoziierte nicht lichenisierte Pilze des Bödmerenwald-Silberen-Gebiets im Muotatal, Kanton Schwyz (Schweiz). Cryptogam Helv 22:1–156

    Google Scholar 

  • Hannah L, Carr JL, Lankerani A (1995) Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers Conserv 4:128–155

    Article  Google Scholar 

  • Harrison S, Ross SJ, Lawton JH (1992) Beta-diversity on geographic gradients in Britain. J Anim Ecol 61:151–158

    Article  Google Scholar 

  • Hill JL, Curran PJ (2003) Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30:1391–1403

    Article  Google Scholar 

  • Hofmann P (1993) Die epiphytische Flechtenflora und -vegetation des östlichen Nordtirol unter Berücksichtigung immissionsökologischer Gesichtspunkte. Bibliotheca Lichenologica 51:1–299

    Google Scholar 

  • Homeier J, Breckle SW, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148

    Article  Google Scholar 

  • Hrivnák R et al (2011) Species richness pattern along altitudinal gradient in Central European Beech Forests. Folia Geobot 49:425–441

    Article  Google Scholar 

  • Ismailov A, Urbanavichus G, Vondrák J, Pouska V (2017) An old-growth forest at the Caspian Sea coast is similar in epiphytic lichens to lowland deciduous forests in Central Europe. Herzogia 30:103–125

    Article  Google Scholar 

  • Ismailov AB, Vondrák J, Urbanavichus GP (2019) Diversity of epiphytic lichens in a 1-hectare of a East Caucasian pine forest. Lesovedenie 4:294–303 (in Russian)

    Google Scholar 

  • Ivanchenko TE, Tsareva DP, Yurchenko VP, Panov VD (1982) Klimat turistskikh marshrutov Zapadnogo Kavkaza v basseinakh rek Belaya i Shakhe. [The Climate of the Western Caucasus along Tourist Routes in the Belaya and Shakhe River Basins.] Gidrometeoizdat, Leningrad

  • Ivonin VM, Egoshin AV (2012) Fragmentation of mountain forests during facilities construction for the Olympic Games in Sochi-2014. ArcReview 3:62

    Google Scholar 

  • James PW, Hawksworth DH, Rose F (1977) Lichen communities in the British Isles: a preliminary conspectus. Academic Press, London

    Google Scholar 

  • Karpachevskiy M, Aksenov D, Yesipova E, Vladimirova N, Danilova I, Kobyakov K, Zhuravleva I (2015) Intact forest territories in Russia: their current estate and the losses of the last 13 years. Sustain For 2:1–7

    Google Scholar 

  • Khoroshev AV (2017) Olympic construction and post-olympic development in Sochi: ecological costs of planning decisions. In: Kazantsev IV (ed) Ecological and geographical problems of the regions of Russia. Samara State Socio-Pedagogical University, Samara, pp 229–236

    Google Scholar 

  • Komarova AF (2017) Diversity of coniferous forests Western Caucasus and patterns of their spatial distribution [Paзнooбpaзиe тeмнoxвoйныx лecoв Ceвepo-зaпaднoгo Кaвкaзa и зaкoнoмepнocти иx пpocтpaнcтвeннoгo pacпpeдeлeния]. Faculty of Biology, Moscow State University, Moscow. (PhD thesis, in Russian)

  • Komposch H, Hafellner J (2000) Diversity and vertical distribution of lichens in a Venezuelan tropical lowland rain forest. Selbyana 21:11–24

    Google Scholar 

  • Lesica P, McCune B, Cooper SV, Hong WS (1991) Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Can J Bot 69:1745–1755

    Article  Google Scholar 

  • Malíček J, Berger F, Bouda F, Cezanne R, Eichler M, Halda JP, Langbehn T, Palice Z, Šoun J, Uhlík P, Vondrák J (2017) Lišejníky zaznamenané během bryologicko-lichenologického setkání v Mohelně na Třebíčsku na jaře. [Lichens recorded during the Bryological and Lichenological meeting in Mohelno (Třebíč region, southwestern Moravia) in spring 2016.] Bryonora 60:24–25

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Can Res 27:209–220

    CAS  Google Scholar 

  • Marmor L, Tõrra T, Saag L, Randlane T (2012) Species richness of epiphytic lichens in coniferous forests: the effect of canopy openness. Ann Bot Fenn 49:352–358

    Article  Google Scholar 

  • Martensen AC, Ribeiro MC, Banks-Leite C, Prado PI, Metzger JP (2012) Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance. Conserv Biol 26:1100–1111

    Article  PubMed  Google Scholar 

  • MEA (2005) Ecosystems and Human Well Being. Biodiversity Synthesis. In: Millennium Ecosystem Assessment, Washington

  • Moning C, Werth S, Dziockd F, Bässlera C, Bradtkae J, Hothorn T, Müller J (2009) Lichen diversity in temperate montane forests is influenced by forest structure more than climate. For Ecol Manage 258:745–751

    Article  Google Scholar 

  • Muesel H, Jäger EJ (1989) Ecogeographical differentiation of the Submediterranean deciduous forest flora. Plant Syst Evol 162:315–329

    Article  Google Scholar 

  • Nascimbene J, Marini L (2015) Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J Biogeogr 42:1222–1232

    Article  Google Scholar 

  • Nascimbene J, Spitale D (2017) Patterns of beta-diversity along elevational gradients inform epiphyte conservation in alpine forests under a climate change scenario. Biol Cons 216:26–32

    Article  Google Scholar 

  • Nascimbene J, Marini L, Ódor P (2012) Drivers of lichen species richness at multiple spatial scales in temperate forests. Plant Ecol Divers 5:355–363

    Article  Google Scholar 

  • Otte V (2007) Biodiversity of lichens and lichenicolous fungi of Mt Bol’šoj Thač (NW Caucasus) and its vicinity. Abh Ber des Naturkundemuseums Görlitz 79:131–140

    Google Scholar 

  • Parviainen J (2005) Virgin and natural forests in the temperate zone of Europe. Forest, Snow Landsc Res 79:9–18

    Google Scholar 

  • Peterken GF (1996) Natural woodland. Cambridge University Press, Cambridge

    Google Scholar 

  • Pinokiyo A, Singh KP, Singh JS (2008) Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40:47–62

    Article  Google Scholar 

  • Potapov P, Hansen MC, Laestadius C et al (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3:e1600821

    Article  PubMed  PubMed Central  Google Scholar 

  • Price MF (2000) )(ed) Cooperation in the European mountains 2: The Caucasus. IUCN, Gland

    Google Scholar 

  • Puntillo D (1996) I Licheni di Calabria. Museo Regionale di Scienze Naturali, Torino

    Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  • Sánchez-González A, López-Mata L (2005) Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Divers Distrib 11:567–575

    Article  Google Scholar 

  • Sanderson NA (2010) Lichens. In: Newton AC (ed) Biodiversity in the new forest. Pisces Publications, Newbury, pp 84–111

    Google Scholar 

  • Schultze J, Gärtner S, Bauhus J, Meyer P, Reif A (2014) Criteria to evaluate the conservation value of strictly protected forest reserves in Central Europe. Biodivers Conserv 23:3519–3542

    Article  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  Google Scholar 

  • Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Vondrák J, Malíček J, Šoun J, Pouska V (2015) Epiphytic lichens of Stužica (E Slovakia) in the context of Central European old-growth forests. Herzogia 28:104–126

    Article  Google Scholar 

  • Vondrák J, Malíček J, Palice Z, Coppins BJ, Kukwa M, Czarnota P, Sanderson N, Acton A (2016) Methods for obtaining more complete species lists in surveys of lichen biodiversity. Nord J Bot 34:619–626

    Article  Google Scholar 

  • Vondrák J, Malíček J, Palice Z, Bouda F, Berger F, Sanderson N, Acton A, Pouska V, Kish R (2018) Exploiting hot-spots; effective determination of lichen diversity in a Carpathian virgin forest. PLoS ONE 13:e0203540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zernov AS (2006) Flora Severo-Zapadnogo Kavkaza [Flora of the North-Western Caucasus.] KMK Sciences Press, Moscow (in Russian)

Download references

Acknowledgements

Permission for research and collecting of lichen samples was issued by N. B. Eskin on behalf of Caucasus State Nature Reserve. We received support from the long-term research development grant RVO [67985939], the Russian Foundation for Basic Research (Project No 15-29-02396), and the institutional research project AAAA A18-118031590042-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Vondrák.

Additional information

Communicated by Pradeep Kumar Divakar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Forest and plantation biodiversity

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vondrák, J., Urbanavichus, G., Palice, Z. et al. The epiphytic lichen biota of Caucasian virgin forests: a comparator for European conservation. Biodivers Conserv 28, 3257–3276 (2019). https://doi.org/10.1007/s10531-019-01818-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01818-4

Keywords

Navigation