Skip to main content
Log in

Strategies of a light-demanding emergent tree to thrive in a neotropical seasonal forest with alternating light or water shortage

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

In tropical seasonal semideciduous forests (TSSF), plants face alternating drought or light shortage in dry and rainy seasons, respectively. To understand how emergent trees deal with seasonality across ontogeny, we sampled all individuals of the widely distributed species Astronium graveolens Jacq. (Anacardiaceae) in 100 random plots (10 m × 10 m each) in a TSSF fragment in southeastern Brazil, and conducted greenhouse experiments on photosynthetic and gas exchange responses to drought and shade. We recognized six ontogenetic stages by external structures, and analyzed height-diameter allometry and biomechanical design across ontogeny. Trade-offs were inferred in early life (increasing height, diameter, or leaf number implied smaller leaves; height growth implied less leaf production) and in mid-life (height or diameter growth implied no branch production). The population did not adjust to a biomechanical model, implying a growth pathway between pioneer and canopy species. All stages were biomechanically stable, and the safety factor decreased with height. In adult trees, the asymptotic height indicated water limitation. In young plants, drought did not affect gas exchange. Light–shadow experiments suggested a trade-off between shoot and root growth. Our results indicate how a light-demanding emergent tree balances trade-offs across ontogeny to deal with seasonally alternating water or light shortage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Bianchini E, Garcia CC, Pimenta JA, Torezan JMD (2010) Slope variation and population structure of tree species from different ecological groups in South Brazil. Anais da Academia Brasileira de Ciências 82:643–652

    Article  PubMed  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    Article  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytol 158:295–303

    Article  Google Scholar 

  • Bullock SH (2000) Developmental patterns of tree dimensions in a Neotropical Deciduous Forest. Biotropica 32:42–52

    Article  Google Scholar 

  • Carvalho PER (2006) Espécies arbóreas brasileiras, vol 1. Embrapa Florestas, Colombo

    Google Scholar 

  • CEPAGRI (2014) Centro de Pesquisas Metereológicas e Climáticas Aplicadas a Agricultura. URL http://www.cpa.unicamp.br/outras-informacoes/clima-de-campinas.html. 2014

  • Cielo-Filho R, Gneri MA, Martins FR (2007) Position on slope, disturbance, and tree species coexistence in a seasonal semideciduous forest in SE Brazil. Plant Ecol 190:189–203

    Article  Google Scholar 

  • Dean T, Long JN (1986) Validity of constant-stress and elastic instability principles of stem formation in Pinus contorta and Trifolium pratense. Ann Bot 58:833–840

    Google Scholar 

  • Feldpausch TR et al (2012) Tree height integrated into pan-tropical forest biomass estimates. Biogeosciences 9:2567–2622 (Discussion)

    Article  Google Scholar 

  • Gandolfi S, Joly CA, Leitão Filho HDF (2009) “Gaps of deciduousness”: cyclical gaps in tropical forests. Sci Agric 66:280–284

    Article  Google Scholar 

  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA (1980) Age states of plants of various growth forms: a review. J Ecol 68:675–696

    Article  Google Scholar 

  • Grime J (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Guzmán Q, Antonio J, Cordero S, Roberto A (2013) Growth and photosynthetic performance of five tree seedlings species in response to natural light regimes from the Central Pacific of Costa Rica. Rev Biol Trop 61:1433–1444

    PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: An architectural analysis. Springer, New York

    Book  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Henry HAL, Aarssen LW (1999) The interpretation of stem diameter-height allometry in trees: biomechanical constraints, neighbor effects, or biased regressions? Ecol Lett 2:89–97

    Article  Google Scholar 

  • Hernandes JL, Pedro Júnior MJ, Bardin L (2004) Variação estacional na radiação solar em ambiente externo e no interior de floresta semidecídua. Rev Árvore 22:167–172

    Google Scholar 

  • Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748

    Article  CAS  Google Scholar 

  • Iida Y, Kohyama TS, Kubo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011) Tree architecture and life-history strategies across 200 co-occurring tropical tree species. Funct Ecol 25:1260–1268

    Article  Google Scholar 

  • Iqbal RM, Rao AR, Rasul E, Wahid A (1997) Mathematical models and response functions in photosynthesis: an exponencial model. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker Press Inc, New York, pp 803–810

    Google Scholar 

  • King D (1981) Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51:351–356

    Article  Google Scholar 

  • King DA (1986) Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology 67:980–990

    Article  Google Scholar 

  • King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • Kitajima K, Mulkey SS, Wright SJ (2005) Variation in crown light utilization characteristics among tropical canopy trees. Ann Bot 95:535–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleiman D, Aarssen LW (2007) The leaf size/number trade-off in trees. J Ecol 95:376–382

    Article  Google Scholar 

  • Laanisto L, Niinemets Ü (2015) Polytolerance to abiotic stresses: how universal is the shade–drought tolerance trade-off in woody species? Glob Ecol Biogeogr 24:571–580

    Article  Google Scholar 

  • Marín WA, Flores EM (2002) Astronium graveolens Jacq. In: Vozzo JA (ed) Tropical tree—seed manual. United States Department of Agriculture—Forest Service, Washington, DC, pp 311–314

    Google Scholar 

  • McMahon T (1973) Size and shape in biology. Science 179:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Millet J (2012) L’architecture des arbres des régions tempérées: son histoire, ses concepts, ses usages. Les Éditions MultiMondes, Québec

    Google Scholar 

  • Niklas KJ (1993) The scaling of plant height: a comparison among major plant clades and anatomical grades. Ann Bot 72:165–172

    Article  Google Scholar 

  • Niklas KJ (1994a) The allometry of safety-factors for plant height. Am J Bot 81:345–351

    Article  Google Scholar 

  • Niklas KJ (1994b) Plant allometry—the scaling of form and process. The University of Chicago Press, Chicago

    Google Scholar 

  • Norberg RA (1988) Theory of growth geometry of plants and self-thinning of plant populations: geometric similarity, elastic similarity, and different growth modes of plant parts. Am Nat 131:220–256

    Article  Google Scholar 

  • Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331

    Article  Google Scholar 

  • Poorter L, Rozendaal DMA (2008) Leaf size and lead display of thirty-eight tropical tree species. Oecologia 158:35–46

    Article  PubMed  Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  • Santos CM, Longui EL, Romeiro D, Zanatto ACS, Morais E, Zanata M, Florsheim SMB (2011) A densidade básica e característica anatômicas variam radialmente na madeira de Astronium graveolens Jacq. (Anacardiaceae). Revista do Instituto Florestal 23:191–201

    Google Scholar 

  • Silva-Luz CL, Pirani JR (2011) Anacardiaceae—Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/

  • Silveira AP, Martins FR, Araújo FS (2012) Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyxin the Brazilian caatinga. Acta Oecol 43:126–133

    Article  Google Scholar 

  • Smirnova O, Palenova M, Komarov A (2002) Ontogeny of different life forms of plants and specific features of age and spatial structure of their populations. Russ J Dev Biol 33:1–10

    Article  Google Scholar 

  • Smith T, Huston M (1989) A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83:49–69

    Article  Google Scholar 

  • Sposito TC, Santos FAM (2001) Scaling of stem and crown in eight Cecropia (Cecropiaceae) species of Brazil. Am J Bot 88:939–949

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40:19–38

    Article  Google Scholar 

  • Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol 132:1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378

    Article  PubMed  Google Scholar 

  • Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE, Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro

    Google Scholar 

  • Walsh RPD (1996) Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J Trop Ecol 12:385–407

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:291

    Article  Google Scholar 

  • Warton D, Duursma R, Falster D, Taskinen S (2011) smatr: (Standardised) Major Axis Estimation and Testing Routines. R package version 3.2.4. http://CRAN.R-project.org/package=smatr,

  • Zhukova LA, Glotov NV (2001) Morphological polyvariance of ontogeny in natural plant populations. Translated from Ontogenez 32:455–461

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana de Campos Franci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos Franci, L., Pereira, L., Machado, R.S. et al. Strategies of a light-demanding emergent tree to thrive in a neotropical seasonal forest with alternating light or water shortage. Braz. J. Bot 39, 207–218 (2016). https://doi.org/10.1007/s40415-015-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0211-5

Keywords

Navigation