Skip to main content
Log in

Detecting ecological groups from traits: a classification of subtropical tree species based on ecological strategies

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

We evaluated the frequently assumed but rarely tested hypothesis that in tropical and subtropical forests species form discontinuities along gradients in trait variation, which can be detected to classify species into ecologically meaningful and statistically defined groups. We also tested the hypothesis that the dominant conifer Araucaria angustifolia have a contrasting trait syndrome from the pool of angiosperms. Data were collected in subtropical mixed conifer-hardwood forests in southern Brazil. Eleven trait variables (relative growth rates, growth rates under favourable conditions, annual mortality rates, seed length, seed dispersal mode, wood density, maximum height, crown depth, stem slenderness, specific leaf area, and leaf blade length) were measured for 66 large tree species. The conifer Araucaria angustifolia differed significantly in most traits and vital rates from the angiosperm distributions. The Simple Structure Index criterion was used to identify the optimum number of non-hierarchical k-means groups. This index was largest for a solution with five groups. Non-hierarchical groups were more strongly related with the resource capture and height gradients than groups formed by hierarchical clustering. We propose the recognition of seven ecological species groups in the studied forests depending on growth rates, leaf size, wood density, height, stem slenderness, dispersal, and crown depth: Conifers, Palms, Pioneers, Large-seeded Pioneers, Wind-dispersed Large trees, Large shade-tolerant trees, and Small Shade-tolerant trees. The classification produced was coherent with the ecological strategies present in the community and represents a subdivision of Westoby’s leaf-height-seed plant strategy scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Plant Sci 173:673–694

    Article  Google Scholar 

  • Budowski G (1965) Distribution of tropical American rain forest species in the light of successional processes. Turrialba 15:40–42

    Google Scholar 

  • Cerabolini BEL, Brusa G, Ceriani RM, Andreis R, Luzzaro A, Pierce S (2010) Can CSR classification be generally applied outside Britain? Plant Ecol 210:253–261

    Article  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1996) Assessing the response of plant functional types to climatic change in tropical forests. J Veg Sci 7:405–416

    Article  Google Scholar 

  • Cornelissen Jhc, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Deng F, Zang R, Chen B (2008) Identification of functional groups in an old-growth tropical montane rain forest on Hainan Island, China. For Ecol Manage 255:1820–1830

    Article  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, De Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Duarte LS, Dillenburg LR (2000) Ecophysiological responses of Araucaria angustifolia (Araucariaceae) seedlings to different irradiance levels. Aust J Bot 48:531–537

    Article  Google Scholar 

  • Easdale TA, Healey JR, Grau HR, Malizia A (2007) Tree life histories in a montane subtropical forest: species differ independently by shade-tolerance, turnover rate and substrate preference. J Ecol 95:1234–1249

    Article  Google Scholar 

  • Falster DS, Westoby M (2005) Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J Ecol 93:521–535

    Article  Google Scholar 

  • Forgiarini CS (2011) Padrões de histórias de vida de espécies arbóreas em uma floresta com araucária do sul do Brasil. Universidade do Vale do Rio dos Sinos. Master Thesis São Leopoldo, Brazil

  • Gonçalves ET, Souza AF (2014) Floristic variation in ecotonal areas: patterns, determinants and biogeographic origins of subtropical forests in South America. Austral Ecol 39:122–134

    Article  Google Scholar 

  • Gourlet-Fleury S, Blanc L, Picard N, Sist P, Dick J, Nasi R, Swaine MD, Forni E (2005) Grouping species for predicting mixed tropical forest dynamics: looking for a strategy. Ann For Sci 62:785–796

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance for ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP, Pierce S (2012) The evolutionary strategies that shape ecosystems. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Hair JF Jr, Anderson RE, Tathan RL, Black WC (1998) Multivariate data analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294

    Article  Google Scholar 

  • Ichaso Clf, Guimarães EF (1975) Cletráceas. In: Reitz PR (ed) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí, pp 3–18

    Google Scholar 

  • Kilinç M, Karavin N, Kutbay HG (2010) Classification of some plant species according to Grime’s strategies in a Quercus cerris L var cerris woodland in Samsun, northern Turkey. Turkish J Bot 34:521–529

    Google Scholar 

  • Köhler P, Ditzer T, Huth A (2000) Concepts for the aggregation of tropical tree species into functional types and the application to Sabah’s lowland rain forests. J Trop Ecol 16:591–602

    Article  Google Scholar 

  • Loehle C (2000) Strategy space and the disturbance spectrum: a life-history model for tree species coexistence. Am Nat 156:14–33

    Article  PubMed  Google Scholar 

  • Lorenzi H (1992) Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Plantarum, Nova Odessa

    Google Scholar 

  • Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender-Bares J (2008) Why are evergreen leaves so contrary about shade? Trends Ecol Evol 23:299–303

    Article  PubMed  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MJM Software, Glenenden Beach

    Google Scholar 

  • Mcgill B, Enquist B, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Noble I, Gitay H (1996) A functional classification for predicting the dynamics of landscapes. J Veg Sci 7:329–336

    Article  Google Scholar 

  • Oliveira JM, Roig FA, Pillar VP (2010) Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlands. Austral Ecol 35:134–147

    Article  Google Scholar 

  • Oliveira-Filho AT, Vilela EA, Carvalho DA, Gavilanes ML (1994) Differentiation of streamside and upland vegetation in an area of montane semideciduous forest in southeastern Brazil. Flora 189:287–305

    Google Scholar 

  • Picard N, Köhler P, Mortier F, Gourlet-Fleury S (2012) A comparison of five classifications of species into functional groups in tropical forests of French Guiana. Ecol Complex 11:75–83

    Article  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Wöll H (2003) Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 84:602–608

    Article  Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • Poorter L, Wright SJ, Paz H, Ackerly DD, Ondit RC, Quez GIBA, Arms KEH (2008) Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89:1908–1920

    Article  CAS  PubMed  Google Scholar 

  • Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Reich PB, Wright IJ, Cavender‐Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164

  • Reitz R, Klein RM, Reis A (1983) Projeto madeira do Rio Grande do Sul. Sellowia 34–35:1–525

    Google Scholar 

  • Santos E (1987) Nossas madeiras. Itatiaia, Belo Horizonte

    Google Scholar 

  • Scheiner SM (1993) Introduction: theories, hypotheses, and statistics. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, New York, pp 3–13

    Google Scholar 

  • Seger GDS (2010) Efeitos filogenéticos em atributos reprodutivos de espécies endozoocóricas em uma floresta com araucária no sul do Brasil Master’s dissertation. Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333

    Article  Google Scholar 

  • Sobral M, Jarenkow JA, Brack P, Irgang BE, Larocca J, Rodrigues RS (2006) Flora arbórea e arborescente do Rio Grande do Sul, Brasil. 1st edn. Rima/Novo Ambiente, São Paulo/Porto Alegre

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman, Nova York

    Google Scholar 

  • Souza AF (2007) Ecological interpretation of multiple population size structures in trees: the case of Araucaria angustifolia in South America. Austral Ecol 32:524–533

    Article  Google Scholar 

  • Souza AF, Forgiarini C, Longhi SJ, Brena DA (2008) Regeneration patterns of a long-lived dominant conifer and the effects of logging in southern South America. Acta Oecol 34:221–232

    Article  Google Scholar 

  • Souza AF, Cortez LSR, Longhi SJ (2012) Native forest management in subtropical South America: long-term effects of logging and multiple-use on forest structure and diversity. Biod Conserv 21:1953–1969

    Article  Google Scholar 

  • Sutherland EK, Hale BJ, Hix DM (2000) Defining species guilds in the Central Hardwood Forest, USA. Plant Ecol 147:1–19

    Article  Google Scholar 

  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86

    Article  Google Scholar 

  • Turner IM (2001) The ecology of trees in the tropical rain forest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378

    Article  PubMed  Google Scholar 

  • Vattimo I (1979) Flora ilustrada catarinense: Lauráceas Herbário Barbosa Rodrigues, Itajaí

  • Violle C, Navas M, Vile D, Kazakou E, Fortunel C (2007) Let the concept of trait be functional ! Oikos 116:882–892

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Whitmore TC (1989) Canopy gaps and the two major groups of forest trees. Ecology 70:536–538

    Article  Google Scholar 

  • Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003) Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84:3174–3185

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Lo, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

  • Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91:3664–3674

    Article  PubMed  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic C, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Global wood density database. Dryad

Download references

Acknowledgments

Financial support was provided by CNPq (Brazilian Research Council) through the ‘‘Projeto Ecológico de Longa Duração Conservação e Manejo Sustentável de Ecossistemas Florestais—Bioma Araucária e suas Transições’’ and by Energética Barra Grande (BAESA). We thank Arselino Pereira de Morais (o Cabo), José Rodrigues de Souza (o Bepe), and Tania Mara V. F. Souza for valuable logistical support. We are also grateful to the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) for research permission and to Artur José Soligo for facilitation of access to the São Francisco de Paula National Forest. Renato Záchia kindly provided Annona seed length data. We are grateful to Márcio Cunha for helping with data handling through a C+ program. Thanks to Elgin S. Perry for suggesting a practical way of classifying external species into the k-means groups. Comments by Courtney G. Collins, Edu Effiom, Lourens Poorter, Robert C. Morrissey, and two anonymous reviewers greatly helped to improve an earlier an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre F. Souza.

Appendix

Appendix

See Appendix Table 2.

Table 2 Species group affiliation of subtropical mixed forest trees in Southern Brazil. aIndicates species that were assigned a posteriori to the five groups identified through k-means cluster analysis (groups 2–6) using minimum Euclidean distances. ID Identification number of species in Fig. 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, A.F., Forgiarini, C., Longhi, S.J. et al. Detecting ecological groups from traits: a classification of subtropical tree species based on ecological strategies. Braz. J. Bot 37, 441–452 (2014). https://doi.org/10.1007/s40415-014-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-014-0084-z

Keywords

Navigation