Skip to main content
Log in

Asymmetry in Reptiles: What Do We Know So Far?

  • Systematic Student Review
  • Published:
Springer Science Reviews

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Developmental disturbances in organisms may lead to subtle deviations from symmetry. Fluctuating asymmetry is the most commonly used measure of developmental instability, and it may be related to fitness. Knowledge of developmental instability in reptiles is incipient and with important gaps since there are few studies on asymmetry on this group. In this review, we quantified and analysed trends of reptiles’ asymmetry in the literature. We used keyword searches at Web of Science and Scopus to identify the available papers on asymmetry in reptiles published until 2012. After screening, 60 papers encompassing asymmetry investigations in reptiles were identified. The number of publications increased in the last two decades and lizards were the most studied group. There were no studies from South America and very few from Africa. Most studies involved the use of only meristic traits for asymmetry analysis and found evidence for fluctuating asymmetry. Some studies did not support the relationship between fluctuating asymmetry as the result of developmental instability and environmental and genetic stress, but most findings indicated that (a) females tend to select males with symmetrical sexual traits; (b) thermal instability during egg development produce individuals with a higher incidence of asymmetry; (c) occurrence of injuries is more frequent in asymmetrical individuals for a particular side; (d) there is a negative correlation between asymmetry and locomotor performance. A summary of the available information and a brief discussion about some asymmetric relationships are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almog A, Bonen H, Herman K, Werner YL (2005) Subspeciation or none? The hardun in the Aegean (Reptilia : Sauria : Agamidae : Laudakia stellio). J Nat Hist 39:567–586. doi:10.1080/00222930400001293

    Article  Google Scholar 

  2. Amaral MJ, Carretero MA, Bicho RC, Soares AMVM, Mann RM (2012) The use of a lacertid lizard as a model for reptile ecotoxicology studies: Part 1—field demographics and morphology. Chemosphere 87:757–764. doi:10.1016/j.chemosphere.2011.12.075

    Article  CAS  PubMed  Google Scholar 

  3. Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361

    Google Scholar 

  4. Arnold SJ, Peterson CR (2002) A model for optimal reaction norms: the case of the pregnant garter snake and her temperature-sensitive embryos. Am Nat 160:306–316. doi:10.1086/341522

    Article  PubMed  Google Scholar 

  5. Bajer K, Molnár O, Torok J, Herczeg G (2010) Female European green lizards (Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behav Ecol Sociobiol 64:2007–2014. doi:10.1007/s00265-010-1012-2

    Article  Google Scholar 

  6. Bancila R, Van Gelder I, Rotteveel E, Loman J, Arntzen JW (2010) Fluctuating asymmetry is a function of population isolation in island lizards. J Zool 282:266–275. doi:10.1111/j.1469-7998.2010.00736.x

    Article  Google Scholar 

  7. Bancila RI, Plaiasu R, Tudor M, Samoila C, Cogalniceanu D (2012) Fluctuating asymmetry in the Eurasian spur-thighed tortoise, Testudo graeca ibera Linneaus, 1758 (Testudines: Testudinidae). Chelonian Conserv Biol 11:234–239. doi:10.2744/CCB-0956.1

    Article  Google Scholar 

  8. Bellaagh M, Lazanyi E, Korsos Z (2010) Calculation of fluctuating asymmetry of the biggest Caspian whipsnake population in Hungary compared to a common snake species. Biologia 65:140–144. doi:10.2478/s11756-009-0219-z

    Article  Google Scholar 

  9. Benítez HA, Parra LE (2011) Fluctuating asymmetry: a morpho-functional tool to measure developmental stability. Int J Morphol 29:1459–1469. doi:10.4067/S0717-95022011000400066

    Article  Google Scholar 

  10. Braña F, Ji X (2000) Influence of incubation temperature on morphology, locomotor performance, and early growth of hatchling wall lizards (Podarcis muralis). J Exp Zool 286:422–433. doi:10.1002/(sici)1097-010x(20000301)286:4<422:aid-jez10>3.0.co;2-d

    Article  PubMed  Google Scholar 

  11. Clarke GM (1995) Relationships between developmental stability and fitness: application for conservation biology. Conserv Biol 9:18–24. doi:10.1046/j.1523-1739.1995.09010018.x

    Article  Google Scholar 

  12. Crnobrnja-Isailovic J, Aleksic I, Bejakovic D (2005) Fluctuating asymmetry in Podarcis muralis populations from Southern Montenegro: detection of environmental stress in insular populations. Amphibia-Reptilia 26:149–158. doi:10.1163/1568538054253500

    Article  Google Scholar 

  13. Cuervo JJ, Shine R (2007) Hues of a dragon’s belly: morphological correlates of ventral coloration in water dragons. J Zool 273:298–304. doi:10.1111/j.1469-7998.2007.00328.x

    Article  Google Scholar 

  14. Davis AK, Grosse AM (2008) Measuring fluctuating asymmetry in plastron scutes of yellow-bellied sliders: the importance of gender, size and body location. Am Midl Nat 159:340–348. doi:10.1674/0003-0031(2008)159%5B340:MFAIPS%5D2.0.CO;2

    Article  Google Scholar 

  15. de Solla SR, Bishop CA, Brooks RJ (2002) Sexually dimorphic morphology of hatchling snapping turtles (Chelydra serpentina) from contaminated and reference sites in the Great Lakes and St Lawrence River basin, North America. Environ Toxicol Chem 21:922–929. doi:10.1897/1551-5028(2002)021<0922:sdmohs>2.0.co;2

    Article  PubMed  Google Scholar 

  16. Dosselman DJ, Schaalje GB, Sites JW (1998) An analysis of fluctuating asymmetry in a hybrid zone between two chromosome races of the Sceloporus grammicus complex (Squamata : Phrynosomatidae) in central Mexico. Herpetologica 54:434–447

    Google Scholar 

  17. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weakness. FASEB J 22:338–342. doi:10.1096/fj.07-9492LSF

    Article  CAS  PubMed  Google Scholar 

  18. Fernández CA, Rivera AC (2004) Asymmetries and accessory scutes in Emys orbicularis from Northwest Spain. Biologia 59:85–88

    Google Scholar 

  19. Gavel Y, Iselid L (2008) Web of Science and Scopus: a journal title overlap study. Online Inf Rev 32:8–21. doi:10.1108/14684520810865958

    Article  Google Scholar 

  20. Gehr DD, Werner YL (2005) Age effects and size effects in the ears of gekkonomorph lizards: inner ear. Hearing Res 200:38–50. doi:10.1016/j.heares.2004.08.013

    Article  Google Scholar 

  21. Greer AE (1993) Lineage-associated asymmetries in scale overlap patterns in squamates. Herpetologica 49:318–326

    Google Scholar 

  22. Herczeg G, Szabo K, Korsos Z (2005) Asymmetry and population characteristics in dice snakes (Natrix tessellata): an interpopulation comparison. Amphibia-Reptilia 26:422–426. doi:10.1163/156853805774408540

    Article  Google Scholar 

  23. Hoso M, Asami T, Hori M (2007) Right-handed snakes: convergent evolution of asymmetry for functional specialization. Biol Lett 3:169–172. doi:10.1098/rsbl.2006.0600

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ji X, Qiu QB, Diong CH (2002) Influence of incubation temperature on hatching success, energy expenditure for embryonic development, and size and morphology of hatchlings in the oriental garden lizard, Calotes versicolor (Agamidae). J Exp Zool 292:649–659. doi:10.1002/jez.10101

    Article  PubMed  Google Scholar 

  25. Kearney M, Shine R (2004) Developmental success, stability, and plasticity in closely related parthenogenetic and sexual lizards (Heteronotia, Gekkonidae). Evolution 58:1560–1572. doi:10.1554/03-559

    Article  PubMed  Google Scholar 

  26. Klingenberg CP (2003) A developmental perspective on developmental instability: theory, models, and mechanisms. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford, pp 14–34

    Google Scholar 

  27. Lachman E, Carmely H, Werner YL (2006) Subspeciation befogged by the “Seligmann effect”: the case of Laudakia stellio (Reptilia: Sauria: Agamidae) in southern Sinai, Egypt. J Nat Hist 40:1259–1284. doi:10.1080/00222930600861207

    Article  Google Scholar 

  28. Lailvaux SP, Irschick DJ (2006) No evidence for female association with high-performance males in the green anole lizard, Anolis carolinensis. Ethology 112:707–715. doi:10.1111/j.1439-0310.2006.01210.x

    Article  Google Scholar 

  29. Leary RF, Allendorf FW (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol Evol 4:214–217. doi:10.1016/0169-5347(89)90077-3

    Article  CAS  PubMed  Google Scholar 

  30. Lens L, Van Dongen S, Kark S, Matthysen E (2002) Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies? Biol Rev 77:27–38. doi:10.1017/S1464793101005796

    Article  PubMed  Google Scholar 

  31. Ljubisavljevic K, Tome S, Dzukic G, Kalezic ML (2005) Morphological differentiation of an isolated population of the Italian wall lizard (Podarcis sicula) of the southeastern Adriatic coast. Biologia 60:189–195

    Google Scholar 

  32. Longson CG, Hare KM, Daugherty CH (2007) Fluctuating asymmetry does not reflect environmental stress during incubation in an oviparous lizard. N Z J Zool 34:91–96

    Article  Google Scholar 

  33. López P, Martín J (2002) Locomotor capacity and dominance in male lizards Lacerta monticola: a trade-off between survival and reproductive success? Biol J Linn Soc 77:201–209. doi:10.1046/j.1095-8312.2002.00103.x

    Article  Google Scholar 

  34. López P, Munoz A, Martín J (2002) Symmetry, male dominance and female mate preferences in the Iberian rock lizard, Lacerta monticola. Behav Ecol Sociobiol 52:342–347. doi:10.1007/s00265-002-0514-y

    Article  Google Scholar 

  35. López P, Amo L, Martín J (2006) Reliable signaling by chemical cues of male traits and health state in male lizards, Lacerta monticola. J Chem Ecol 32:473–488. doi:10.1007/s10886-005-9012-9

    Article  PubMed  Google Scholar 

  36. Lourdais O, Shine R, Bonnet X, Guillon M, Naulleau G (2004) Climate affects embryonic development in a viviparous snake, Vipera aspis. Oikos 104:551–560. doi:10.1111/j.0030-1299.2004.12961.x

    Article  Google Scholar 

  37. Lowenborg K, Shine R, Hagman M (2011) Fitness disadvantages to disrupted embryogenesis impose selection against suboptimal nest-site choice by female grass snakes, Natrix natrix (Colubridae). J Evol Biol 24:177–183. doi:10.1111/j.1420-9101.2010.02153.x

    Article  CAS  PubMed  Google Scholar 

  38. Martín J, López P (2000) Chemoreception, symmetry and mate choice in lizards. Proc R Soc B-Biol Sci 267:1265–1269. doi:10.1098/rspb.2000.1137

    Article  Google Scholar 

  39. Martín J, López P (2001) Hindlimb asymmetry reduces escape performance in the lizard Psammodromus algirus. Physiol Biochem Zool 74:619–624. doi:10.1086/322925

    Article  PubMed  Google Scholar 

  40. Martín J, López P (2006) Links between male quality, male chemical signals, and female mate choice in Iberian rock lizards. Funct Ecol 20:1087–1096. doi:10.1111/j.1365-2435.2006.01183.x

    Article  Google Scholar 

  41. Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500. doi:10.1007/s00442-002-0952-2

    Article  Google Scholar 

  42. Møller AP, Swaddle JP (1997) Asymmetry, developmental stability and evolution. Oxford University Press, Oxford, p 291

    Google Scholar 

  43. Møller AP, Thornhill R (1997) A meta-analysis of the heritability of developmental stability. J Evol Biol 10:1–16. doi:10.1007/s000360050001

    Article  Google Scholar 

  44. Molnár O, Bajer K, Török J, Herczeg G (2012) Individual quality and nuptial throat colour in male European green lizards. J Zool 287:233–239. doi:10.1111/j.1469-7998.2012.00916.x

    Article  Google Scholar 

  45. Muth A (1980) Physiological ecology of desert iguana (Dipsosaurus dorsalis) eggs: temperature and water relations. Ecology 61:1335–1343. doi:10.2307/1939042

    Article  Google Scholar 

  46. Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Markow TA (ed) Developmental Instability: its origins and evolutionary implications. Kluwer Academic Publishers, Dordrecht, pp 335–364

    Chapter  Google Scholar 

  47. Palmer AR (2000) Quasireplication and the contract of error: lessons from sex ratios, heritabilities and fluctuating asymmetry. Annu Rev Ecol Evol Syst 31:441–480. doi:10.1146/annurev.ecolsys.31.1.441

    Article  Google Scholar 

  48. Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421. doi:10.1146/annurev.ecolsys.17.1.391

    Article  Google Scholar 

  49. Palmer AR, Strobeck C (2003) Fluctuating asymmetry analyses revisited. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford, pp 279–319

    Google Scholar 

  50. Parsons PA (1990) Fluctuating asymmetry: an epigenetic measure of stress. Biol Rev Camb Philos 65:131–145. doi:10.1111/j.1469-185X.1990.tb01186.x

    Article  CAS  Google Scholar 

  51. Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley

    Google Scholar 

  52. Pinto MP, Grelle CEV (2009) Seleção de reservas: estudos na América do Sul e revisão de conceitos. Oecol Brasiliensis 13:498–517. doi:10.4257/oeco.2009.1303.06

    Article  Google Scholar 

  53. Qualls CP, Andrews RM (1999) Cold climates and the evolution of viviparity in reptiles: cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus. Biol J Linn Soc 67:353–376. doi:10.1006/bijl.1998.0307

    Google Scholar 

  54. Quarnström A, Forsgren E (1998) Should females prefer dominant males? Trends Ecol Evol 13:498–501. doi:10.1016/S0169-5347(98)01513-4

    Article  Google Scholar 

  55. Razzetti E, Faiman R, Werner YL (2007) Directional asymmetry and correlation of tail injury with left-side dominance occur in Serpentes (Sauropsida). Zoomorphology 126:31–43. doi:10.1007/s00435-007-0028-2

    Article  Google Scholar 

  56. Rivera G, Claude J (2008) Environmental media and shape asymmetry: a case study on turtle shells. Biol J Linn Soc 94:483–489. doi:10.1111/j.1095-8312.2008.01008.x

    Article  Google Scholar 

  57. Rocha CFD, Van Sluys M (2008) Comportamento de Répteis. In: Del-Claro K, Prezoto F, Sabino J (eds) As distintas faces do comportamento animal. UNIDERP, Campo Grande, pp 173–188

    Google Scholar 

  58. Rubolini D, Pupin F, Sacchi R, Gentilli A, Zuffi MAL, Galeotti P, Saino N (2006) Sexual dimorphism in digit length ratios in two lizard species. Anat Rec A 288:491–497. doi:10.1002/ar.a.20323

    Article  Google Scholar 

  59. Sarre S (1996) Habitat fragmentation promotes fluctuating asymmetry but not morphological divergence in two geckos. Res Popul Ecol 38:57–64

    Article  Google Scholar 

  60. Sarre S, Dearn JM (1991) Morphological variation and fluctuating asymmetry among insular populations of the sleepy lizard, Trachydosaurus rugosus Gray (Squamata: Scincidae). Aust J Zool 39:91–104. doi:10.1071/zo9910091

    Article  Google Scholar 

  61. Seligmann H (1998) Evidence that minor directional asymmetry is functional in lizard hindlimbs. J Zool 245:205–208. doi:10.1017/s0952836998006086

    Article  Google Scholar 

  62. Seligmann H (2000) Evolution and ecology of developmental processes and of the resulting morphology: directional asymmetry in hindlimbs of Agamidae and Lacertidae (Reptilia: Lacertilia). Biol J Linn Soc 69:461–481. doi:10.1006/bijl.1999.0366

    Article  Google Scholar 

  63. Seligmann H (2002) Behavioural and morphological asymmetries in hindlimbs of Hoplodactylus duvaucelii (Lacertilia: Gekkonomorpha: Gekkota: Diplodactylinae). Laterality 7:277–283. doi:10.1080/13576500244000067

    PubMed  Google Scholar 

  64. Seligmann H (2006) Error propagation across levels of organization: from chemical stability of ribosomal RNA to developmental stability. J Theor Biol 242:69–80. doi:10.1016/j.jtbi.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  65. Seligmann H (2010) The ambush hypothesis at the whole-organism level: off frame, ‘hidden’ stops in vertebrate mitochondrial genes increase developmental stability. Comput Biol Chem 34:80–85. doi:10.1016/j.compbiolchem.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  66. Seligmann H (2011) Error compensation of tRNA misacylation by codon-anticodon mismatch prevents translational amino acid misinsertion. Comput Biol Chem 35:81–95. doi:10.1016/j.compbiolchem.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  67. Seligmann H, Krishnan NM (2006) Mitochondrial replication origin stability and propensity of adjacent tRNA genes to form putative replication origins increase developmental stability in lizards. J Exp Zool B. 306:433–449. doi:10.1002/jez.b.21095

    Article  Google Scholar 

  68. Seligmann H, Beiles A, Werner YL (2003) More injuries in left-footed individual lizards and Sphenodon. J Zool 260:129–144. doi:10.1017/s0952836903003558

    Article  Google Scholar 

  69. Seligmann H, Moravec J, Werner YL (2008) Morphological, functional and evolutionary aspects of tail autotomy and regeneration in the ‘living fossil’ Sphenodon (Reptilia: Rhynchocephalia). Biol J Linn Soc 93:721–743. doi:10.1111/j.1095-8312.2008.00975.x

    Article  Google Scholar 

  70. Shine R, Olsson MM, LeMaster MP, Moore IT, Mason RT (2000) Are snakes right-handed? Asymmetry in hemipenis size and usage in gartersnakes (Thamnophis sirtalis). Behav Ecol 11:411–415. doi:10.1093/beheco/11.4.411

    Article  Google Scholar 

  71. Shine R, Langkilde T, Wall M, Mason RT (2005) The fitness correlates of scalation asymmetry in garter snakes Thamnophis sirtalis parietalis. Funct Ecol 19:306–314. doi:10.1111/j.1365-2435.2005.00963.x

    Article  Google Scholar 

  72. Socci AM, Schlaepper MA, Gavin TA (2005) The importance of soil moisture and leaf cover in a female lizard’s (Norops polylepis) evaluation of potential oviposition sites. Herpetologica 61:233–240. doi:10.1655/04-67.1

    Article  Google Scholar 

  73. Soulé M (1967) Phenetics of natural populations.2. Asymmetry and evolution in a lizard. Am Nat 101:141–160. doi:10.1086/282480

    Article  Google Scholar 

  74. Swaddle JP (2003) Fluctuating asymmetry, animal behavior, and evolution. Adv Stud Behav 32:169–205. doi:10.1016/S0065-3454(03)01004-0

    Article  Google Scholar 

  75. Tull JC, Brussard PF (2007) Fluctuating asymmetry as an indicator of environmental stress from off-highway vehicles. J Wildl Manag 71:1944–1948. doi:10.2193/2006-397

    Article  Google Scholar 

  76. Van Dongen S (2006) Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J Evol Biol 19:1727–1743. doi:10.1111/j.1420-9101.2006.01175.x

    Article  CAS  PubMed  Google Scholar 

  77. Van Raan AFJ (1997) Scientometrics: state-of-art. Scientometrics 38(1):205–218. doi:10.1007/BF02461131

    Article  Google Scholar 

  78. Van Valen L (1962) A study of fluctuating asymmetry. Evolution 16:125–142. doi:10.2307/2406192

    Article  Google Scholar 

  79. Veiga JP, Salvador A, Martín J, López P (1997) Testosterone stress does not increase asymmetry of a hormonally mediated sexual ornament in a lizard. Behav Ecol Sociobiol 41:171–176. doi:10.1007/s002650050376

    Article  Google Scholar 

  80. Velo-Antón G, Becker CG, Cordero-Rivera A (2011) Turtle carapace anomalies: the roles of genetic diversity and environment. PLoS ONE 6:e18714. doi:10.1371/journal.pone.0018714

    Article  PubMed Central  PubMed  Google Scholar 

  81. Verbeek A, Debackere K, Luwel M, Zimmermann E (2002) Measuring the progress and evolution in science and technology—I: the multiple uses of bibliometric indicators. Int J Manag Rev 4:179–211. doi:10.1111/1468-2370.00083

    Article  Google Scholar 

  82. Vervust B, Van Dongen S, Grbac I, Van Damme R (2008) Fluctuating asymmetry, physiological performance, and stress in island populations of the Italian wall lizard (Podarcis sicula). J Herpetol 42:369–377. doi:10.1670/07-1202.1

    Article  Google Scholar 

  83. Voipio P (1991) On pileus anomalies in the common lizard Lacerta vivipara in Finland—a morphogenetic problem revisited. Ann Zool Fenn 28:83–94

    Google Scholar 

  84. Wapstra E (2000) Maternal basking opportunity affects juvenile phenotype in a viviparous lizard. Funct Ecol 14:345–352. doi:10.1046/j.1365-2435.2000.00428.x

    Article  Google Scholar 

  85. Warner DA, Shine R (2006) Morphological variation does not influence locomotor performance within a cohort of hatchling lizards (Amphibolurus muricatus, Agamidae). Oikos 114:126–134

    Article  Google Scholar 

  86. Werner YL, Seifan T (2006) Eye size in geckos: asymmetry, allometry, sexual dimorphism, and behavioral correlates. J Morphol 267:1486–1500. doi:10.1002/jmor.10499

    Article  PubMed  Google Scholar 

  87. Werner YL, Shapira T (2011) A brief review of morphological variation in Natrix tessellata in Israel: between sides, among individuals, between sexes, and among regions. Turk J Zool 35:451–466. doi:10.3906/zoo-1002-54

    Google Scholar 

  88. Werner YL, Rothenstein D, Sivan N (1991) Directional asymmetry in reptiles (Sauria: Gekkonidae: Ptyodactylus) and its possible evolutionary role, with implications for biometrical methodology. J Zool 225:647–658

    Article  Google Scholar 

  89. Werner YL, Safford SD, Seifan M, Saunders JC (2005) Effects of age and size in the ears of gekkonomorph lizards: middle-ear morphology with evolutionary implications. Anat Rec A. 283:212–223. doi:10.1002/ar.a.20142

    Article  Google Scholar 

  90. Wilson DS (1998) Nest-site selection: microhabitat variation and its effects on the survival of turtle embryos. Ecology 79:1884–1892. doi:10.1890/0012-9658(1998)079%5B1884:NSSMVA%5D2.0.CO;2

    Article  Google Scholar 

  91. Zamfirescu SR, Zamfirescu O, Popescu IE, Ion C (2009) Preliminary data on the population characteristics of Vipera ursinii moldavica from “Dealul lui Dumnezeu” (Iasi County, Romania) with notes on conservation. North-West J Zool 5:85–96

    Google Scholar 

Download references

Acknowledgments

We are grateful to Paula C. Eterovick, Mara C. Kiefer, Gisele R. Winck, and two anonymous reviewers for their helpful suggestions and comments on the manuscript. We also thank Márcio C. Zikán for English review. RCL received grants from Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq) (Process 141889/2012-5), and CFDR received grants from CNPq (Processes 304791/2010-5 and 472287/2010-8) and from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Process E-26/102.765/2012) through the “Programa Cientistas do Nosso Estado”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael C. Laia.

Additional information

Endorsed by Carlos Frederico Duarte Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laia, R.C., Pinto, M.P., Menezes, V.A. et al. Asymmetry in Reptiles: What Do We Know So Far?. Springer Science Reviews 3, 13–26 (2015). https://doi.org/10.1007/s40362-014-0028-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40362-014-0028-9

Keywords

Navigation