Skip to main content

Advertisement

Log in

Soft-tissue sarcoma in adolescents and young adults

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Soft-tissue sarcoma is a rare cancer that accounts for approximately 1% of all malignant tumors. Although they occur in various age groups, soft-tissue sarcomas account for 8% of all malignant tumors developing in adolescents and young adults, suggesting that they are not rare in this age group. This study aimed to evaluate the clinical and pathological characteristics of soft-tissue sarcoma in adolescents and young adults. According to the Bone and Soft-Tissue Tumor Registry in Japan, myxoid liposarcoma is the most common type of soft-tissue sarcoma found in adolescents and young adults; alveolar soft part sarcoma, extraskeletal Ewing sarcoma, epithelioid sarcoma, clear cell sarcoma and synovial sarcoma occur predominantly in this age group among soft-tissue sarcomas. The analysis based on this registry demonstrated that age was not a prognostic factor for poor survival of soft-tissue sarcoma, although the prognosis in adolescents and young adults was better than that in older patients in the US and Scandinavia. Adolescent and young adult patients with soft-tissue sarcoma have age-specific problems, and a multidisciplinary approach to physical, psychological, and social issues is necessary to improve the management of these young patients both during and after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferrari A, Sultan I, Huang TT et al (2011) Soft tissue sarcoma across the age spectrum: a population-based study from the Surveillance Epidemiology and End Results database. Pediatr Blood Cancer 57:943–949. https://doi.org/10.1002/pbc.23252

    Article  Google Scholar 

  2. Ogura K, Higashi T, Kawai A (2017) Statistics of soft-tissue sarcoma in Japan: Report from the Bone and Soft Tissue Tumor Registry in Japan. J Orthop Sci 22:755–764. https://doi.org/10.1016/j.jos.2017.03.017

    Article  Google Scholar 

  3. Fukushima T, Ogura K, Akiyama T et al (2021) Soft tissue sarcoma in adolescent and young adult patients: a retrospective study using a nationwide bone and soft tissue tumor registry in Japan. Jpn J Clin Oncol. https://doi.org/10.1093/jjco/hyab044

    Article  Google Scholar 

  4. Papworth KE, Arroyo VM, Styring E et al (2019) Soft-tissue sarcoma in adolescents and young adults compared with older adults: a report among 5000 patients from the Scandinavian Sarcoma Group Central Register. Cancer 125:3595–3602. https://doi.org/10.1002/cncr.32367

    Article  CAS  Google Scholar 

  5. van der Graaf WTA, Orbach D, Judson IR et al (2017) Soft tissue sarcomas in adolescents and young adults: a comparison with their paediatric and adult counterparts. Lancet Oncol 18:e166–e175. https://doi.org/10.1016/S1470-2045(17)30099-2

    Article  Google Scholar 

  6. Sultan I, Qaddoumi I, Yaser S et al (2009) Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J Clin Oncol 27:3391–3397. https://doi.org/10.1200/JCO.2008.19.7483

    Article  Google Scholar 

  7. Pervaiz N, Colterjohn N, Farrokhyar F et al (2008) A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer 113:573–581. https://doi.org/10.1002/cncr.23592

    Article  Google Scholar 

  8. Tanaka K, Ozaki T (2021) Adjuvant and neoadjuvant chemotherapy for soft tissue sarcomas: JCOG Bone and Soft Tissue Tumor Study Group. Jpn J Clin Oncol 51:180–184. https://doi.org/10.1093/jjco/hyaa231

    Article  Google Scholar 

  9. Dürr HR, Rauh J, Baur-Melnyk A et al (2018) Myxoid liposarcoma: local relapse and metastatic pattern in 43 patients. BMC Cancer 18:304. https://doi.org/10.1186/s12885-018-4226-8

    Article  Google Scholar 

  10. Hoffman A, Ghadimi MPH, Demicco EG et al (2013) Localized and metastatic myxoid/round cell liposarcoma. Cancer 119:1868–1877. https://doi.org/10.1002/cncr.27847

    Article  CAS  Google Scholar 

  11. Wu J, Qian S, Jin L (2019) Prognostic factors of patients with extremity myxoid liposarcomas after surgery. J Orthop Surg 14:90. https://doi.org/10.1186/s13018-019-1120-2

    Article  Google Scholar 

  12. Lansu J, Bovée JVMG, Braam P et al (2021) Dose reduction of preoperative radiotherapy in myxoid liposarcoma: a nonrandomized controlled trial. JAMA Oncol 7:e205865. https://doi.org/10.1001/jamaoncol.2020.5865

    Article  Google Scholar 

  13. The Canadian Orthopaedic Oncology Society (CANOOS), Moreau L-C, Turcotte R et al (2012) Myxoid\round cell liposarcoma (MRCLS) Revisited: an analysis of 418 primarily managed cases. Ann Surg Oncol 19:1081–1088. https://doi.org/10.1245/s10434-011-2127-z

    Article  Google Scholar 

  14. Takahashi M, Takahashi S, Araki N et al (2017) Efficacy of trabectedin in patients with advanced translocation-related sarcomas: pooled analysis of two phase II studies. Oncologist 22:979–988. https://doi.org/10.1634/theoncologist.2016-0064

    Article  CAS  Google Scholar 

  15. Gronchi A, Ferrari S, Quagliuolo V et al (2017) Histotype-tailored neoadjuvant chemotherapy versus standard chemotherapy in patients with high-risk soft-tissue sarcomas (ISG-STS 1001): an international, open-label, randomised, controlled, phase 3, multicentre trial. Lancet Oncol 18:812–822. https://doi.org/10.1016/S1470-2045(17)30334-0

    Article  CAS  Google Scholar 

  16. Gronchi A, Hindi N, Cruz J et al (2019) Trabectedin and radiotherapy in soft tissue sarcoma (TRASTS): results of a phase I study in myxoid liposarcoma from Spanish (GEIS), Italian (ISG), French (FSG) sarcoma groups. EClinicalMedicine 9:35–43. https://doi.org/10.1016/j.eclinm.2019.03.007

    Article  Google Scholar 

  17. Aytekin MN, Öztürk R, Amer K et al (2020) Epidemiology, incidence, and survival of synovial sarcoma subtypes: SEER database analysis. J Orthop Surg Hong Kong 28:2309499020936009. https://doi.org/10.1177/2309499020936009

    Article  Google Scholar 

  18. Smolle MA, Parry M, Jeys L et al (2019) Synovial sarcoma: do children do better? Eur J Surg Oncol 45:254–260. https://doi.org/10.1016/j.ejso.2018.07.006

    Article  Google Scholar 

  19. Ferrari A, Gronchi A, Casanova M et al (2004) Synovial sarcoma: a retrospective analysis of 271 patients of all ages treated at a single institution. Cancer 101:627–634. https://doi.org/10.1002/cncr.20386

    Article  Google Scholar 

  20. Sultan I, Rodriguez-Galindo C, Saab R et al (2009) Comparing children and adults with synovial sarcoma in the surveillance, epidemiology, and end results program, 1983 to 2005: an analysis of 1268 patients. Cancer 115:3537–3547. https://doi.org/10.1002/cncr.24424

    Article  Google Scholar 

  21. Ferrari A, Bleyer A, Patel S et al (2018) The challenge of the management of adolescents and young adults with soft tissue sarcomas. Pediatr Blood Cancer 65:e27013. https://doi.org/10.1002/pbc.27013

    Article  Google Scholar 

  22. Ferrari A, Chi Y-Y, De Salvo GL et al (2017) Surgery alone is sufficient therapy for children and adolescents with low-risk synovial sarcoma: a joint analysis from the European paediatric soft tissue sarcoma Study Group and the Children’s Oncology Group. Eur J Cancer Oxf Engl (1990) 78:1–6. https://doi.org/10.1016/j.ejca.2017.03.003

    Article  Google Scholar 

  23. Venkatramani R, Xue W, Randall RL et al (2021) Synovial sarcoma in children, adolescents, and young adults: a report from the children’s oncology group ARST0332 study. J Clin Oncol. https://doi.org/10.1200/JCO.21.01628

    Article  Google Scholar 

  24. Miettinen MM, Antonescu CR, Fletcher CDM et al (2017) Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1-a consensus overview. Hum Pathol 67:1–10. https://doi.org/10.1016/j.humpath.2017.05.010

    Article  CAS  Google Scholar 

  25. Well L, Salamon J, Kaul MG et al (2019) Differentiation of peripheral nerve sheath tumors in patients with neurofibromatosis type 1 using diffusion-weighted magnetic resonance imaging. Neuro-Oncol 21:508–516. https://doi.org/10.1093/neuonc/noy199

    Article  CAS  Google Scholar 

  26. Tovmassian D, Abdul Razak M, London K (2016) The role of [18F]FDG-PET/CT in predicting malignant transformation of plexiform neurofibromas in neurofibromatosis-1. Int J Surg Oncol 2016:6162182. https://doi.org/10.1155/2016/6162182

    Article  Google Scholar 

  27. Nishida Y, Urakawa H, Nakayama R et al (2021) Phase II clinical trial of pazopanib for patients with unresectable or metastatic malignant peripheral nerve sheath tumors. Int J Cancer 148:140–149. https://doi.org/10.1002/ijc.33201

    Article  CAS  Google Scholar 

  28. Koscielniak E, Sparber-Sauer M, Scheer M et al (2021) Extraskeletal Ewing sarcoma in children, adolescents, and young adults. An analysis of three prospective studies of the Cooperative Weichteilsarkomstudiengruppe (CWS). Pediatr Blood Cancer 68:e29145. https://doi.org/10.1002/pbc.29145

    Article  CAS  Google Scholar 

  29. Womer RB, West DC, Krailo MD et al (2012) Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 30:4148–4154. https://doi.org/10.1200/JCO.2011.41.5703

    Article  CAS  Google Scholar 

  30. Chin M, Yokoyama R, Sumi M et al (2020) Multimodal treatment including standard chemotherapy with vincristine, doxorubicin, cyclophosphamide, ifosfamide, and etoposide for the Ewing sarcoma family of tumors in Japan: Results of the Japan Ewing Sarcoma Study 04. Pediatr Blood Cancer 67:e28194. https://doi.org/10.1002/pbc.28194

    Article  Google Scholar 

  31. Le Deley MC, Paulussen M, Lewis I et al (2014) Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 trial. J Clin Oncol 32:2440–2448. https://doi.org/10.1200/jco.2013.54.4833

    Article  Google Scholar 

  32. Anderton J, Moroz V, Marec-Bérard P et al (2020) International randomised controlled trial for the treatment of newly diagnosed EWING sarcoma family of tumours EURO EWING 2012 protocol. Trials 21:96. https://doi.org/10.1186/s13063-019-4026-8

    Article  Google Scholar 

  33. Ozaki T, Hillmann A, Hoffmann C et al (1996) Significance of surgical margin on the prognosis of patients with Ewing’s sarcoma. A report from the Cooperative Ewing’s Sarcoma Study. Cancer 78:892–900. https://doi.org/10.1002/(SICI)1097-0142(19960815)78:4%3c892::AID-CNCR29%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  34. Hosoi H (2016) Current status of treatment for pediatric rhabdomyosarcoma in the USA and Japan. Pediatr Int 58:81–87. https://doi.org/10.1111/ped.12867

    Article  CAS  Google Scholar 

  35. Miyachi M, Tsuchiya K, Hosono A et al (2019) Phase II study of vincristine, actinomycin-D, cyclophosphamide and irinotecan for patients with newly diagnosed low-risk subset B rhabdomyosarcoma: a study protocol. Medicine (Baltimore) 98:e18344. https://doi.org/10.1097/MD.0000000000018344

    Article  CAS  Google Scholar 

  36. Bisogno G, Compostella A, Ferrari A et al (2012) Rhabdomyosarcoma in adolescents: a report from the AIEOP Soft Tissue Sarcoma Committee. Cancer 118:821–827. https://doi.org/10.1002/cncr.26355

    Article  Google Scholar 

  37. Trama A, Botta L, Foschi R et al (2016) Survival of European adolescents and young adults diagnosed with cancer in 2000–07: population-based data from EUROCARE-5. Lancet Oncol 17:896–906. https://doi.org/10.1016/S1470-2045(16)00162-5

    Article  Google Scholar 

  38. Ferrari A, Dileo P, Casanova M et al (2003) Rhabdomyosarcoma in adults. A retrospective analysis of 171 patients treated at a single institution. Cancer 98:571–580. https://doi.org/10.1002/cncr.11550

    Article  Google Scholar 

  39. Fletcher CD, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050. https://doi.org/10.1200/JCO.2001.19.12.3045

    Article  CAS  Google Scholar 

  40. Wang H, Jacobson A, Harmon DC et al (2016) Prognostic factors in alveolar soft part sarcoma: a SEER analysis. J Surg Oncol 113:581–586. https://doi.org/10.1002/jso.24183

    Article  Google Scholar 

  41. Portera CA, Ho V, Patel SR et al (2001) Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer 91:585–591. https://doi.org/10.1002/1097-0142(20010201)91:3%3c585::aid-cncr1038%3e3.0.co;2-0

    Article  Google Scholar 

  42. Ogura K, Beppu Y, Chuman H et al (2012) Alveolar soft part sarcoma: a single-center 26-patient case series and review of the literature. Sarcoma 2012:907179. https://doi.org/10.1155/2012/907179

    Article  Google Scholar 

  43. Schöffski P, Wozniak A, Kasper B et al (2018) Activity and safety of crizotinib in patients with alveolar soft part sarcoma with rearrangement of TFE3: European Organization for Research and Treatment of Cancer (EORTC) phase II trial 90101 ‘CREATE.’ Ann Oncol 29:758–765. https://doi.org/10.1093/annonc/mdx774

    Article  Google Scholar 

  44. Kummar S, Allen D, Monks A et al (2013) Cediranib for metastatic alveolar soft part sarcoma. J Clin Oncol 31:2296–2302. https://doi.org/10.1200/JCO.2012.47.4288

    Article  CAS  Google Scholar 

  45. Judson I, Morden JP, Kilburn L et al (2019) Cediranib in patients with alveolar soft-part sarcoma (CASPS): a double-blind, placebo-controlled, randomised, phase 2 trial. Lancet Oncol 20:1023–1034. https://doi.org/10.1016/S1470-2045(19)30215-3

    Article  CAS  Google Scholar 

  46. Kim M, Kim TM, Keam B et al (2019) A phase II trial of pazopanib in patients with metastatic alveolar soft part sarcoma. Oncologist 24:20-e29. https://doi.org/10.1634/theoncologist.2018-0464

    Article  CAS  Google Scholar 

  47. Urakawa H, Kawai A, Goto T et al (2020) Phase II trial of pazopanib in patients with metastatic or unresectable chemoresistant sarcomas: a Japanese Musculoskeletal Oncology Group study. Cancer Sci 111:3303–3312. https://doi.org/10.1111/cas.14542

    Article  CAS  Google Scholar 

  48. Chbani L, Guillou L, Terrier P et al (2009) Epithelioid sarcoma: a clinicopathologic and immunohistochemical analysis of 106 cases from the French Sarcoma Group. Am J Clin Pathol 131:222–227. https://doi.org/10.1309/AJCPU98ABIPVJAIV

    Article  Google Scholar 

  49. Czarnecka AM, Sobczuk P, Kostrzanowski M et al (2020) Epithelioid sarcoma: from genetics to clinical practice. Cancers 12:2112. https://doi.org/10.3390/cancers12082112

    Article  CAS  Google Scholar 

  50. Asano N, Yoshida A, Ogura K et al (2015) Prognostic value of relevant clinicopathologic variables in epithelioid sarcoma: a multi-institutional retrospective study of 44 patients. Ann Surg Oncol 22:2624–2632. https://doi.org/10.1245/s10434-014-4294-1

    Article  Google Scholar 

  51. Frezza AM, Jones RL, Lo Vullo S et al (2018) Anthracycline, gemcitabine, and pazopanib in epithelioid sarcoma: a multi-institutional case series. JAMA Oncol 4:e180219. https://doi.org/10.1001/jamaoncol.2018.0219

    Article  Google Scholar 

  52. Gounder M, Schöffski P, Jones RL et al (2020) Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol 21:1423–1432. https://doi.org/10.1016/S1470-2045(20)30451-4

    Article  CAS  Google Scholar 

  53. Kawai A, Hosono A, Nakayama R et al (2007) Clear cell sarcoma of tendons and aponeuroses: a study of 75 patients. Cancer 109:109–116. https://doi.org/10.1002/cncr.22380

    Article  CAS  Google Scholar 

  54. Wagner AJ, Goldberg JM, Dubois SG et al (2012) Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer 118:5894–5902. https://doi.org/10.1002/cncr.27582

    Article  CAS  Google Scholar 

  55. Schöffski P, Wozniak A, Stacchiotti S et al (2017) Activity and safety of crizotinib in patients with advanced clear-cell sarcoma with MET alterations: European Organization for Research and Treatment of Cancer phase II trial 90101 ‘CREATE.’ Ann Oncol 28:3000–3008. https://doi.org/10.1093/annonc/mdx527

    Article  Google Scholar 

  56. Lewis DR, Seibel NL, Smith AW et al (2014) Adolescent and young adult cancer survival. J Natl Cancer Inst Monogr 2014:228–235. https://doi.org/10.1093/jncimonographs/lgu019

    Article  Google Scholar 

  57. van der Meer DJ, Karim-Kos HE, van der Mark M et al (2020) Incidence, survival, and mortality trends of cancers diagnosed in adolescents and young adults (15–39 years): a population-based study in the Netherlands 1990–2016. Cancers 12:E3421. https://doi.org/10.3390/cancers12113421

    Article  Google Scholar 

  58. Youn P, Milano MT, Constine LS et al (2014) Long-term cause-specific mortality in survivors of adolescent and young adult bone and soft tissue sarcoma: a population-based study of 28,844 patients. Cancer 120:2334–2342. https://doi.org/10.1002/cncr.28733

    Article  Google Scholar 

  59. Fujii H, Honoki K, Ishihara T et al (2019) Miscorrelation of functional outcome and sociooccupational status of childhood, adolescent, and young adult generation with bone and soft tissue sarcoma patients. J Pediatr Hematol Oncol 41:112–117. https://doi.org/10.1097/MPH.0000000000001410

    Article  Google Scholar 

  60. Younger E, Husson O, Bennister L et al (2018) Age-related sarcoma patient experience: results from a national survey in England. BMC Cancer 18:991. https://doi.org/10.1186/s12885-018-4866-8

    Article  Google Scholar 

  61. Reed DR, Naghavi A, Binitie O (2019) Sarcoma as a model for adolescent and young adult care. J Oncol Pract 15:239–247. https://doi.org/10.1200/JOP.18.00684

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Research (C) (T. Kunisada, No. 19K09650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kunisada.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunisada, T., Nakata, E., Fujiwara, T. et al. Soft-tissue sarcoma in adolescents and young adults. Int J Clin Oncol 28, 1–11 (2023). https://doi.org/10.1007/s10147-022-02119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-022-02119-7

Keywords

Navigation