Skip to main content

Advertisement

Log in

Radio-guided surgery with beta emission: status and perspectives

  • Mini-Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Surgery is a key treatment for localized or locally advanced solid tumors. However, the application of wide safety margins can result in significant side effects and functional limitations for the patient. On the contrary, tissue-sparing surgery may leave residual tumor, which can lead to local recurrent cancer or distant metastases. To address these problems, intraoperative radio-guidance, such as beta radio-guided surgery (RGS), could be used to detect small cancerous tissue and selectively resect malignant areas. This paper provides a comprehensive review of RGS based on beta emission, focusing on the physical principles that differentiate beta radiation from gamma radiation, which is already commonly used in nuclear medicine. Although beta RGS was proposed several decades ago, its popularity has recently increased, possibly due to the widespread use of newly developed PET radiotracers. Various approaches are currently being investigated to assess the effectiveness of beta RGS, including the use of both beta+ and beta− emitting radiopharmaceuticals. Beta RGS has unique characteristics that make it a promising complementary technique to standard procedures. Encouraging results have been obtained in numerous ex vivo and in vivo tests. However, clinical trials are needed to demonstrate the real clinical value of these promising technologies. The references presented represent the most impactful works in the development of beta RGS, according to the authors. Papers were selected from a Scopus search with keywords “radio-guided surgery” and “beta emitter”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camillocci ES, Baroni G, Bellini F et al (2014) A novel radioguided surgery technique exploiting β− decays. Sci Rep 4(1):4401. https://doi.org/10.1038/srep04401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selverstone B, Solomon AK, Sweet WH (1949) Location of brain tumors by means of radioactive phosphorus. J Am Med Assoc 140(3):277–278. https://doi.org/10.1001/jama.1949.02900380017004

    Article  CAS  PubMed  Google Scholar 

  3. Hess S, Blomberg BA, Rakheja R et al (2014) A brief overview of novel approaches to FDG PET imaging and quantification. Clin Transl Imaging 2:187–198. https://doi.org/10.1007/s40336-014-0062-2

    Article  Google Scholar 

  4. Piert M, Burian M, Meisetschläger G et al (2007) Positron detection for the intraoperative localisation of cancer deposits. Eur J Nucl Med Mol Imaging 34(10):1534–1544. https://doi.org/10.1007/s00259-007-0430-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Strong VE, Humm J, Russo P et al (2008) A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc 22(2):386–391. https://doi.org/10.1007/s00464-007-9611-3

    Article  PubMed  Google Scholar 

  6. Mester C, Bruschini C, Magro P et al (2011) A handheld β + probe for intra-operative detection of radiotracers. Sensors. IEEE, Limerick, pp 1812–1814. https://doi.org/10.1109/ICSENS.2011.6127141

    Chapter  Google Scholar 

  7. Daghighian F, Fong Y (2015) Detectors for intraoperative molecular imaging: from probes to scanners. In: Fong Y, Giulianotti P, Lewis J, Groot Koerkamp B, Reiner T (eds) Imaging and visualization in the modern operating room. Springer, New York. https://doi.org/10.1007/978-1-4939-2326-7_4

    Chapter  Google Scholar 

  8. Collamati F, van Oosterom MN, De Simoni M et al (2020) A DROP-IN beta probe for robot-assisted 68Ga-PSMA radioguided surgery: first ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res 10(1):92. https://doi.org/10.1186/s13550-020-00682-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zervos EE, Desai DC, DePalatis LR et al (2001) 18F-labeled fluorodeoxyglucose positron emission tomography-guided surgery for recurrent colorectal cancer: a feasibility study. J Surg Res 97(1):9–13. https://doi.org/10.1006/jsre.2001.6092

    Article  CAS  PubMed  Google Scholar 

  10. Franc BL, Mari C, Johnson D, Leong SP (2005) The role of a positron- and high-energy gamma photon probe in intraoperative localization of recurrent melanoma. Clin Nucl Med 30(12):787–791. https://doi.org/10.1097/01.rlu.0000186856.86505.96

    Article  PubMed  Google Scholar 

  11. Yen TC, See LC, Lai CH et al (2004) 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med 45(1):22–29

    CAS  PubMed  Google Scholar 

  12. Van Oosterom MN, Rietbergen DDD, Welling MM, Van Der Poel HG, Maurer T, Van Leeuwen FWB (2019) Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices 16(8):711–734. https://doi.org/10.1080/17434440.2019.1642104

    Article  CAS  PubMed  Google Scholar 

  13. Morganti S, Bertani E, Bocci V et al (2020) Tumor-non-tumor discrimination by a β- detector for radio guided surgery on ex-vivo neuroendocrine tumors samples. Phys Med 72:96–102. https://doi.org/10.1016/j.ejmp.2020.03.021

    Article  CAS  PubMed  Google Scholar 

  14. Mancini-Terracciano C, Bocci V, Colandrea M et al (2019) Radio-Guided surgery with β− radiation: tests on ex-vivo specimens. In: Lhotska L, Sukupova L, Lacković I, Ibbott G (eds) World congress on medical physics and biomedical engineering 2018. IFMBE proceedings, vol 68/3. Springer, Singapore. https://doi.org/10.1007/978-981-10-9023-3_126

    Chapter  Google Scholar 

  15. Russomando A, Schiariti M, Bocci V et al (2019) The β- radio-guided surgery: method to estimate the minimum injectable activity from ex-vivo test. Phys Med 58:114–120. https://doi.org/10.1016/j.ejmp.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Solfaroli Camillocci E, Schiariti M, Bocci V et al (2016) First ex vivo validation of a radioguided surgery technique with β-radiation. Phys Med 32(9):1139–1144. https://doi.org/10.1016/j.ejmp.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  17. Bertani E, Collamati F, Colandrea M et al (2021) First ex vivo results of beta-radioguided surgery in small intestine neuroendocrine tumors with Y-90-DOTATOC. Cancer Biother Radiopharm 36(5):397–406. https://doi.org/10.1089/cbr.2020.4487

    Article  CAS  PubMed  Google Scholar 

  18. Collamati F, Bellini F, Bocci V et al (2015) Time evolution of DOTATOC uptake in neuroendocrine tumors in view of a possible application of radioguided surgery with β decay. J Nucl Med 56(10):1501–1506. https://doi.org/10.2967/jnumed.115.160481

    Article  CAS  PubMed  Google Scholar 

  19. Scotognella T, Maccora D, Bruno I et al (2022) 90Y-DOTA-nimotuzumab: synthesis of a promising β− radiopharmaceutical. Curr Radiopharm 15(1):32–39. https://doi.org/10.2174/1874471013999210104220031

    Article  CAS  PubMed  Google Scholar 

  20. Martelli C, Marzano V, Marini F et al (2018) Mass spectrometry characterization of DOTA-Nimotuzumab conjugate as precursor of an innovative β- tracer suitable in radio-guided surgery. J Pharm Biomed Anal 156:8–15. https://doi.org/10.1016/j.jpba.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  21. Bonzom S, Ménard L, Pitre S et al (2007) An intraoperative beta probe dedicated to glioma surgery: design and feasibility study. IEEE Trans Nucl Sci 54(1):30–41. https://doi.org/10.1109/TNS.2006.885574

    Article  Google Scholar 

  22. Mancini-Terracciano C, Donnarumma R, Bencivenga G et al (2017) Feasibility of beta-particle radioguided surgery for a variety of “nuclear medicine” radionuclides. Phys Med 43:127–133. https://doi.org/10.1016/j.ejmp.2017.10.012

    Article  PubMed  Google Scholar 

  23. Collamati F, Moretti R, Alunni-Solestizi L et al (2019) Characterisation of a β detector on positron emitters for medical applications. Phys Med 67:85–90. https://doi.org/10.1016/j.ejmp.2019.10.025

    Article  CAS  PubMed  Google Scholar 

  24. Collamati F, Bocci V, Castellucci P et al (2018) Radioguided surgery with β radiation: a novel application with Ga68. Sci Rep 8(1):16171. https://doi.org/10.1038/s41598-018-34626-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alunni Solestizi L, Amoruso R, Biasini M et al (2020) Feasibility study on the use of CMOS sensors as detectors in radioguided surgery with β-emitters. Appl Radiat Isot 165:109347. https://doi.org/10.1016/j.apradiso.2020.109347

    Article  CAS  PubMed  Google Scholar 

  26. Solestizi LA, Biasini M, Bocci V et al (2018) Use of a CMOS image sensor for beta-emitting radionuclide measurements. J Instrum 13(7):P07003. https://doi.org/10.1088/1748-0221/13/07/P07003

    Article  Google Scholar 

  27. Collamati F, Amoruso R, Servoli L et al (2020) Stability and efficiency of a CMOS sensor as detector of low energy β and γ particles. J Instrum 15(11):P11003. https://doi.org/10.1088/1748-0221/15/11/P11003

    Article  CAS  Google Scholar 

  28. Sabet H, Stack BC, Nagarkar VV (2015) A hand-held, intra-operative positron imaging probe for surgical applications. IEEE Trans Nucl Sci 62(5):1927–1934. https://doi.org/10.1109/TNS.2015.2446434

    Article  CAS  Google Scholar 

  29. Monge F, Shakir DI, Lejeune F (2017) Acquisition models in intraoperative positron surface imaging. Int J Comput Assist Radiol Surg 12(4):691–703. https://doi.org/10.1007/s11548-016-1487-z

    Article  PubMed  Google Scholar 

  30. Wendler T, Traub J, Ziegler SI, Navab N (2006) Navigated three dimensional beta probe for optimal cancer resection. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention—MICCAI 2006, vol 4190. Lecture notes in computer science. Springer, Berlin. https://doi.org/10.1007/11866565_69

    Chapter  Google Scholar 

  31. Bluemel C, Matthies P, Herrmann K, Povoski SP (2016) 3D scintigraphic imaging and navigation in radioguided surgery: freehand SPECT technology and its clinical applications. Expert Rev Med Devices 13(4):339–351. https://doi.org/10.1586/17434440.2016.1154456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RM, SM and FC: Literature search and review, manuscript writing. AF, VL: Manuscript writing and editing.

Corresponding author

Correspondence to Francesco Collamati.

Ethics declarations

Conflict of interest

Riccardo Mirabelli, Silvio Morganti, Anita Florit, Valerio Lanni and Francesco Collamati declare to have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirabelli, R., Morganti, S., Florit, A. et al. Radio-guided surgery with beta emission: status and perspectives. Clin Transl Imaging (2024). https://doi.org/10.1007/s40336-023-00606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40336-023-00606-z

Keywords

Navigation