Skip to main content

Advertisement

Log in

Positron emission tomography in pediatric and adult sarcoma

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Sarcomas are a heterogeneous group of malignant tumors of mesenchymal origin that potentially affect any part of the human body. Although considered relatively rare, these tumors constitute almost 1 % of all malignancies in adults and 12 % in the pediatric population. Diagnostic imaging plays an important role in the management of bone and soft tissue sarcomas, and both PET and PET/CT have been shown to be powerful noninvasive imaging methods with detection rates up to 95 %. Also for assessment of the local extent and staging metabolic imaging is useful. In addition, response to chemotherapy can be predicted noninvasive. Therefore, FDG PET has been included in guidelines (e.g., NCCN or ESMO). However, metabolic imaging of sarcomas is not generally accepted and often not reimbursed. Also the role of non-FDG tracers in clinical routine remains unclear in sarcoma. Because of the rarity of the tumor entity, multicenter trials are warranted to develop specific and profound recommendations for the use of FDG PET or non-FDG tracers in sarcoma. The initial promising results of stand-alone PET/MRI need also to be confirmed in larger patient cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29. doi:10.3322/caac.21208

    Article  PubMed  Google Scholar 

  2. Miller RW, Young JL Jr, Novakovic B (1995) Childhood cancer. Cancer 75:395–405

    Article  CAS  PubMed  Google Scholar 

  3. Fletcher C, Bridge J, Hogendoorn P, Mertens F (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC, Lyon

    Google Scholar 

  4. Stiller CA, Trama A, Serraino D, Rossi S, Navarro C, Chirlaque MD, Casali PG (2013) Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer 49:684–695. doi:10.1016/j.ejca.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  5. Hansen MF, Seton M, Merchant A (2006) Osteosarcoma in Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):P58–P63. doi:10.1359/jbmr.06s211

    Article  CAS  PubMed  Google Scholar 

  6. Freebody J, Wegner EA, Rossleigh MA (2014) 2-deoxy-2-((18)F)fluoro-d-glucose positron emission tomography/computed tomography imaging in paediatric oncology. World J Radiol 6:741–755. doi:10.4329/wjr.v6.i10.741

    Article  PubMed Central  PubMed  Google Scholar 

  7. Edge SB, Byrd DR, Compton CC, Fritz AG, Green FL, Trotti A (2010) AJCC cancer staging manual, 7th edn. Springer, New York

    Google Scholar 

  8. Meyer JS, Nadel HR, Marina N, Womer RB, Brown KL, Eary JF, Gorlick R, Grier HE, Randall RL, Lawlor ER, Lessnick SL, Schomberg PJ, Kailo MD (2008) Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group Bone Tumor Committee. Pediatr Blood Cancer 51:163–170. doi:10.1002/pbc.21596

    Article  PubMed  Google Scholar 

  9. Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K (2013) PET/CT in oncology: current status and perspectives. Curr Radiol Rep 1:177–190. doi:10.1007/s40134-013-0016-x

    Article  PubMed Central  PubMed  Google Scholar 

  10. Charest M, Hickeson M, Lisbona R, Novales-Diaz JA, Derbekyan V, Turcotte RE (2009) FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. Eur J Nucl Med Mol Imaging 36:1944–1951. doi:10.1007/s00259-009-1203-0

    Article  PubMed  Google Scholar 

  11. Arndt CA, Crist WM (1999) Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341:342–352. doi:10.1056/NEJM199907293410507

    Article  CAS  PubMed  Google Scholar 

  12. ESMO/European Sarcoma Network Working Group (2014) Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii113–123. doi:10.1093/annonc/mdu256

  13. ESMO/European Sarcoma Network Working Group (2014) Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3): iii102–112. doi:10.1093/annonc/mdu254

  14. Costelloe CM, Chuang HH, Madewell JE (2014) FDG PET/CT of primary bone tumors. AJR Am J Roentgenol 202:521–531. doi:10.2214/AJR.13.11833

    Article  Google Scholar 

  15. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V (2002) The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 43:510–518

    PubMed  Google Scholar 

  16. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, Sato N, Inoue T, Endo K (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777. doi:10.1148/radiology.219.3.r01ma08774

    Article  CAS  PubMed  Google Scholar 

  17. Schulte M, Brecht-Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, Diederichs CG, Von Baer A, Kotzerke J, Reske SN (2000) Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 41:1695–1701

    CAS  PubMed  Google Scholar 

  18. Benz MR, Dry SM, Eilber FC, Allen-Auerbach MS, Tap WD, Elashoff D, Phelps ME, Czernin J (2010) Correlation between glycolytic phenotype and tumor grade in soft-tissue sarcomas by 18F-FDG PET. J Nucl Med 51:1174–1181. doi:10.2967/jnumed.109.074229

    Article  PubMed Central  PubMed  Google Scholar 

  19. Trojani M, Contesso G, Coindre JM, Rouesse J, Bui NB, de Mascarel A, Goussot JF, David M, Bonichon F, Lagarde C (1984) Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer 33:37–42

    Article  CAS  PubMed  Google Scholar 

  20. Schuetze SM (2006) Utility of positron emission tomography in sarcomas. Curr Opin Oncol 18:369–373. doi:10.1097/01.cco.0000228744.49294.12

    Article  PubMed  Google Scholar 

  21. Klaeser B, Mueller MD, Schmid RA, Guevara C, Krause T, Wiskirchen J (2009) PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol 19:1780–1785. doi:10.1007/s00330-009-1338-1

    Article  PubMed  Google Scholar 

  22. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF (2000) (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 6:1279–1287

    CAS  PubMed  Google Scholar 

  23. Panicek DM, Gatsonis C, Rosenthal DI, Seeger LL, Huvos AG, Moore SG, Caudry DJ, Palmer WE, McNeil BJ (1997) CT and MR imaging in the local staging of primary malignant musculoskeletal neoplasms: report of the Radiology Diagnostic Oncology Group. Radiology 202:237–246. doi:10.1148/radiology.202.1.8988217

    Article  CAS  PubMed  Google Scholar 

  24. Yokouchi M, Terahara M, Nagano S, Arishima Y, Zemmyo M, Yoshioka T, Tanimoto A, Komiya S (2011) Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma. BMC Musculoskelet Disord 12:166. doi:10.1186/1471-2474-12-166

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim EE (2007) Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology 245:839–847. doi:10.1148/radiol.2453061538

    Article  PubMed  Google Scholar 

  26. Volker T, Denecke T, Steffen I, Misch D, Schonberger S, Plotkin M, Ruf J, Furth C, Stover B, Hautzel H, Henze G, Amthauer H (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441. doi:10.1200/JCO.2007.12.2473

    Article  PubMed  Google Scholar 

  27. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    Article  CAS  PubMed  Google Scholar 

  28. McCarville MB, Christie R, Daw NC, Spunt SL, Kaste SC (2005) PET/CT in the evaluation of childhood sarcomas. AJR Am J Roentgenol 184:1293–1304. doi:10.2214/ajr.184.4.01841293

    Article  PubMed  Google Scholar 

  29. Franzius C, Daldrup-Link HE, Sciuk J, Rummeny EJ, Bielack S, Jurgens H, Schober O (2001) FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12:479–486

    Article  CAS  PubMed  Google Scholar 

  30. Iagaru A, Chawla S, Menendez L, Conti PS (2006) 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 27:795–802. doi:10.1097/01.mnm.0000237986.31597.86

    Article  PubMed  Google Scholar 

  31. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945. doi:10.2967/jnumed.106.035774

    Article  PubMed  Google Scholar 

  32. Allen-Auerbach M, Yeom K, Park J, Phelps M, Czernin J (2006) Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer. J Nucl Med 47:298–301

    PubMed  Google Scholar 

  33. NCCN (2014) NCCN clinical practice guidelines in oncology—bone cancer. Version 1. 2015

  34. Grimer R, Judson I, Peake D, Seddon B (2010) Guidelines for the management of soft tissue sarcomas. Sarcoma 2010:506182. doi:10.1155/2010/506182

    PubMed Central  PubMed  Google Scholar 

  35. Vijayamurugan N, Bakhshi S (2014) Review of management issues in relapsed osteosarcoma. Expert Rev Anticancer Ther 14:151–161. doi:10.1586/14737140.2014.863453

    Article  CAS  PubMed  Google Scholar 

  36. NCCN (2014) NCCN clinical practice guidelines in oncology—soft tissue sarcoma. Version 2. 2014

  37. Al-Ibraheem A, Buck AK, Benz MR, Rudert M, Beer AJ, Mansour A, Pomykala KL, Haller B, Juenger H, Scheidhauer K, Schwaiger M, Herrmann K (2013) (18)F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer 119:1227–1234. doi:10.1002/cncr.27866

    Article  CAS  PubMed  Google Scholar 

  38. Collin C, Godbold J, Hajdu S, Brennan M (1987) Localized extremity soft tissue sarcoma: an analysis of factors affecting survival. J Clin Oncol 5:601–612

    CAS  PubMed  Google Scholar 

  39. Gaynor JJ, Tan CC, Casper ES, Collin CF, Friedrich C, Shiu M, Hajdu SI, Brennan MF (1992) Refinement of clinicopathologic staging for localized soft tissue sarcoma of the extremity: a study of 423 adults. J Clin Oncol 10:1317–1329

    CAS  PubMed  Google Scholar 

  40. Reynoso D, Subbiah V, Trent JC, Guadagnolo BA, Lazar AJ, Benjamin R, Pollock RE, Ludwig JA (2010) Neoadjuvant treatment of soft-tissue sarcoma: a multimodality approach. J Surg Oncol 101:327–333. doi:10.1002/jso.21481

    Article  CAS  PubMed  Google Scholar 

  41. Evilevitch V, Weber WA, Tap WD, Allen-Auerbach M, Chow K, Nelson SD, Eilber FR, Eckardt JJ, Elashoff RM, Phelps ME, Czernin J, Eilber FC (2008) Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14:715–720. doi:10.1158/1078-0432.CCR-07-1762

    Article  CAS  PubMed  Google Scholar 

  42. Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, Elashoff D, Chow K, Evilevitch V, Eckardt JJ, Phelps ME, Weber WA, Eilber FC (2009) FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 15:2856–2863. doi:10.1158/1078-0432.CCR-08-2537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Caldarella C, Treglia G, Isgro MA, Treglia I, Giordano A (2012) The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to treatment in patients with multiple myeloma. Int J Mol Imaging 2012:175–803. doi:10.1155/2012/175803

    Google Scholar 

  44. Hongtao L, Hui Z, Bingshun W, Xiaojin W, Zhiyu W, Shuier Z, Aina H, Yuanjue S, Daliu M, Zan S, Yang Y (2012) 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol 21:165–170. doi:10.1016/j.suronc.2012.07.002

    Article  Google Scholar 

  45. Byun BH, Kong CB, Lim I, Kim BI, Choi CW, Song WS, Cho WH, Jeon DG, Koh JS, Lee SY, Lim SM (2014) Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential (18)F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging 41:1553–1562. doi:10.1007/s00259-014-2746-2

    Article  CAS  PubMed  Google Scholar 

  46. Kong CB, Byun BH, Lim I, Choi CW, Lim SM, Song WS, Cho WH, Jeon DG, Koh JS, Yoo JY, Lee SY (2013) (18)F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging 40:728–736. doi:10.1007/s00259-013-2344-8

    Article  CAS  PubMed  Google Scholar 

  47. Herrmann K, Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, Schuster T, Eckardt JJ, Phelps ME, Weber WA, Eilber FC (2012) 18F-FDG-PET/CT Imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res 18:2024–2031. doi:10.1158/1078-0432.CCR-11-2139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Schuetze SM, Rubin BP, Vernon C, Hawkins DS, Bruckner JD, Conrad EU 3rd, Eary JF (2005) Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–348. doi:10.1002/cncr.20769

    Article  PubMed  Google Scholar 

  49. Eary JF, Conrad EU, O’Sullivan J, Hawkins DS, Schuetze SM, O’Sullivan F (2014) Sarcoma mid-therapy [F-18]fluorodeoxyglucose positron emission tomography (FDG PET) and patient outcome. J Bone Joint Surg Am 96:152–158. doi:10.2106/JBJS.M.00062

    Article  PubMed Central  PubMed  Google Scholar 

  50. Mick CG, James T, Hill JD, Williams P, Perry M (2014) Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J Roentgenol 203:263–271. doi:10.2214/AJR.13.12158

    Article  PubMed  Google Scholar 

  51. Volker JF, Hodge HC, Wilson HJ, Van Voorhis SN (1940) The adsorption of fluorides by enamel, dentine, bone, and hydroxyapatite as shown by the radioactive isotope. J Biol Chem 134:543–548

    CAS  Google Scholar 

  52. Iagaru A, Mittra E, Dick DW, Gambhir SS (2012) Prospective evaluation of (99 m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 14:252–259. doi:10.1007/s11307-011-0486-2

    Article  PubMed  Google Scholar 

  53. Iagaru A, Mosci C, Dick DW, Sathekge M, Lapa P, de Lima JM, Gambhir SS (2013) Combined 18F-fluoride and 18F-FDG PET/CT: a response based on actual data from prospective studies. Eur J Nucl Med Mol Imaging 40:1922–1924. doi:10.1007/s00259-013-2556-y

    Article  PubMed  Google Scholar 

  54. Vallabhajosula S (2007) (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37:400–419. doi:10.1053/j.semnuclmed.2007.08.004

    Article  PubMed  Google Scholar 

  55. Shen G, Deng H, Hu S, Jia Z (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skelet Radiol 43:1503–1513. doi:10.1007/s00256-014-1903-9

    Article  Google Scholar 

  56. Tateishi U, Yamaguchi U, Maeda T, Seki K, Terauchi T, Kawai A, Arai Y, Moriyama N, Kakizoe T (2006) Staging performance of carbon-11 choline positron emission tomography/computed tomography in patients with bone and soft tissue sarcoma: comparison with conventional imaging. Cancer Sci 97:1125–1128. doi:10.1111/j.1349-7006.2006.00288.x

    Article  CAS  PubMed  Google Scholar 

  57. Kole AC, Plaat BE, Hoekstra HJ, Vaalburg W, Molenaar WM (1999) FDG and l-[1-11C]-tyrosine imaging of soft-tissue tumors before and after therapy. J Nucl Med 40:381–386

    CAS  PubMed  Google Scholar 

  58. Watanabe H, Inoue T, Shinozaki T, Yanagawa T, Ahmed AR, Tomiyoshi K, Oriuchi N, Tokunaga M, Aoki J, Endo K, Takagishi K (2000) PET imaging of musculoskeletal tumours with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur J Nucl Med 27:1509–1517

    Article  CAS  PubMed  Google Scholar 

  59. Buck AK, Herrmann K, Buschenfelde CM, Juweid ME, Bischoff M, Glatting G, Weirich G, Moller P, Wester HJ, Scheidhauer K, Dechow T, Peschel C, Schwaiger M, Reske SN (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 14:2970–2977. doi:10.1158/1078-0432.CCR-07-4294

    Article  CAS  PubMed  Google Scholar 

  60. Cobben DC, Elsinga PH, Suurmeijer AJ, Vaalburg W, Maas B, Jager PL, Hoekstra HJ (2004) Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-l-thymidine. Clin Cancer Res 10:1685–1690

    Article  CAS  PubMed  Google Scholar 

  61. Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC (2012) 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118:3135–3144. doi:10.1002/cncr.26630

    Article  PubMed Central  PubMed  Google Scholar 

  62. Been LB, Suurmeijer AJ, Elsinga PH, Jager PL, van Ginkel RJ, Hoekstra HJ (2007) 18F-fluorodeoxythymidine PET for evaluating the response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcomas. J Nucl Med 48:367–372

    CAS  PubMed  Google Scholar 

  63. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407. doi:10.1126/science.1070200

    Article  CAS  PubMed  Google Scholar 

  64. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, Chen X (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    CAS  PubMed  Google Scholar 

  65. Cianfriglia M, Mariani M, Armellini D, Massone A, Lafata M, Presentini R, Antoni G (1986) Methods for high frequency production of soluble antigen-specific hybridomas; specificities and affinities of the monoclonal antibodies obtained. Methods Enzymol 121:193–210

    Article  CAS  PubMed  Google Scholar 

  66. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, Weber WA, Schwaiger M (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46:1333–1341

    CAS  PubMed  Google Scholar 

  67. Townsend DW, Cherry SR (2001) Combining anatomy and function: the path to true image fusion. Eur Radiol 11:1968–1974. doi:10.1007/s003300101007

    Article  CAS  PubMed  Google Scholar 

  68. Brant W, Brant C (2006) Fundamentals of diagnostic radiology. Lippincott, Wiliams & Williams, Philadelphia

    Google Scholar 

  69. Gilbert NF, Cannon CP, Lin PP, Lewis VO (2009) Soft-tissue sarcoma. J Am Acad Orthop Surg 17:40–47

    PubMed  Google Scholar 

  70. Gielen JL, De Schepper AM, Vanhoenacker F, Parizel PM, Wang XL, Sciot R, Weyler J (2004) Accuracy of MRI in characterization of soft tissue tumors and tumor-like lesions. A prospective study in 548 patients. Eur Radiol 14:2320–2330. doi:10.1007/s00330-004-2431-0

    Article  PubMed  Google Scholar 

  71. De Schepper AM, De Beuckeleer L, Vandevenne J, Somville J (2000) Magnetic resonance imaging of soft tissue tumors. Eur Radiol 10:213–223. doi:10.1007/s003300050037

    Article  PubMed  Google Scholar 

  72. Ferrone ML, Raut CP (2012) Modern surgical therapy: limb salvage and the role of amputation for extremity soft-tissue sarcomas. Surg Oncol Clin North Am 21:201–213. doi:10.1016/j.soc.2011.11.001

    Article  Google Scholar 

  73. Bajpai J, Gamnagatti S, Kumar R, Sreenivas V, Sharma MC, Khan SA, Rastogi S, Malhotra A, Safaya R, Bakhshi S (2011) Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol 41:441–450. doi:10.1007/s00247-010-1876-3

    Article  PubMed  Google Scholar 

  74. Gaa J, Rummeny EJ, Seemann MD (2004) Whole-body imaging with PET/MRI. Eur J Med Res 9:309–312

    CAS  PubMed  Google Scholar 

  75. Bredella MA, Caputo GR, Steinbach LS (2002) Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol 179:1145–1150. doi:10.2214/ajr.179.5.1791145

    Article  PubMed  Google Scholar 

  76. Popperl G, Lang S, Dagdelen O, Jager L, Tiling R, Hahn K, Tatsch K (2002) Correlation of FDG-PET and MRI/CT with histopathology in primary diagnosis, lymph node staging and diagnosis of recurrency of head and neck cancer. Rofo 174:714–720. doi:10.1055/s-2002-32215

    Article  CAS  PubMed  Google Scholar 

  77. Pfluger T, Melzer HI, Mueller WP, Coppenrath E, Bartenstein P, Albert MH, Schmid I (2012) Diagnostic value of combined (18)F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging 39:1745–1755. doi:10.1007/s00259-012-2228-3

    Article  PubMed  Google Scholar 

  78. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–855. doi:10.2967/jnumed.111.098608

    Article  PubMed  Google Scholar 

  79. Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Furst S, Gaertner FC, Loeffelbein DJ, Rummeny EJ, Ziegler SI, Schwaiger M, Beer AJ (2014) Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 55:191–197. doi:10.2967/jnumed.113.123646

    Article  PubMed  Google Scholar 

  80. Loft A, Jensen KE, Lofgren J, Daugaard S, Petersen MM (2013) PET/MRI for preoperative planning in patients with soft tissue sarcoma: a technical report of two patients. Case Rep Med 2013:791078. doi:10.1155/2013/791078

    PubMed Central  PubMed  Google Scholar 

  81. Partovi S, Kohan AA, Zipp L, Faulhaber P, Kosmas C, Ros PR, Robbin MR (2014) Hybrid PET/MR imaging in two sarcoma patients—clinical benefits and implications for future trials. Int J Clin Exp Med 7:640–648

    PubMed Central  PubMed  Google Scholar 

  82. Rauscher I, Eiber M, Furst S, Souvatzoglou M, Nekolla SG, Ziegler SI, Rummeny EJ, Schwaiger M, Beer AJ (2014) PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med 55:724–729. doi:10.2967/jnumed.113.129247

    Article  CAS  PubMed  Google Scholar 

  83. Schramm G, Langner J, Hofheinz F, Petr J, Beuthien-Baumann B, Platzek I, Steinbach J, Kotzerke J, van den Hoff J (2013) Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: a direct comparison with transmission-based attenuation correction. MAGMA 26:115–126. doi:10.1007/s10334-012-0328-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Schramm G, Langner J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, Platzek I, van den Hoff J (2013) Influence and compensation of truncation artifacts in MR-based attenuation correction in PET/MR. IEEE Trans Med Imaging 32:2056–2063. doi:10.1109/TMI.2013.2272660

    Article  CAS  PubMed  Google Scholar 

  85. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, von Schulthess GK, Kuhn FP (2012) PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39:1154–1160. doi:10.1007/s00259-012-2113-0

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have nothing to disclose.

Human and Animal Studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Herrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluemel, C., Fendler, W.P., Lopci, E. et al. Positron emission tomography in pediatric and adult sarcoma. Clin Transl Imaging 3, 83–93 (2015). https://doi.org/10.1007/s40336-015-0109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0109-z

Keywords

Navigation