Skip to main content
Log in

Sinc-Galerkin solution to eighth-order boundary value problems

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

Many problems that arise in astrophysics, hydrodynamic and hydromagnetic stability, fluid dynamics, astronomy, beam and long wave theory are modeled as eighth-order boundary-value problems. In this paper we show that the sinc-Galerkin method is an efficient and accurate numerical scheme for solving these problems. The inner product approximations to eighth and seventh order derivatives and the corresponding error estimates are derived. Compared to the non-polynomial spline technique and the reproducing kernel space method, we show that the sinc-Galerkin method provides more accurate results. In addition, for problems with singular solutions or singular source functions, the sinc-Galerkin method is shown to maintain the exponential convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdrabou, A., El-Gamel, M.: On the sinc-Galerkin method for triharmonic boundary-value problems. Comput. Math. Appl. 76, 520–533 (2018)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R.: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986)

    Book  MATH  Google Scholar 

  3. Akram, G., Rehman, H.: Numerical solution of eighth order boundary value problems in reproducing kernel space. Numer. Algorithms 62, 527–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Al-Khaled, K.: Sinc numerical solution for solitons and solitary waves. J. Comput. Appl. Math. 130, 283–292 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Annaby, M., Asharabi, R.: On sinc-based method in computing eigenvalues of boundary-value problems. Siam J. Numer. Anal. 46, 671–690 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ballem, S., Viswanadham, K.: Numerical solution of eighth order boundary value problems by Galerkin method with septic B-splines. Proc. Eng. 127, 1370–1377 (2015)

    Article  Google Scholar 

  7. Bialecki, B.: Sinc-collocation methods for two-point boundary value problems. IMA J. Numer. Anal. 11, 357–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bishop, D., Cannon, S., Miao, S.: On coupled bending and torsional vibration of uniform beams. J. Sound Vib. 131, 457–464 (1989)

    Article  MATH  Google Scholar 

  9. Boutayeb, A., Twizell, E.: Finite difference methods for the solution of eighth-order boundary value problems. Int. J. Comput. Math. 48, 63–75 (1993)

    Article  MATH  Google Scholar 

  10. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  11. Conn, N.R., Gould, N., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization, SIAM and MPS (2000)

  12. El-Gamel, M., Cannon, J., Zayed, A.: Sinc-Galerkin method for solving linear sixth-order boundary-value problems. Math. Comput. 73, 1325–1343 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Gamel, M., Mohsen, A., Abdrabou, A.: Sinc-Galerkin solution to the clamped plate eigenvalue problem. SeMA J 74, 165–180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Gamel, M., Mohsen, A., El-Mohsen, A.A.: Sinc-Galerkin method for solving biharmonic problems. Appl. Math. Comput. 247, 386–396 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Golbabai, A., Javidi, M.: Application of homotopy perturbation method for solving eighthorder boundary value problems. Appl. Math. Comput. 191, 334–346 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Grenander, V., Szego, G.: Toeplitz Forms and Their Applications, 2nd edn. Chelsea Publishing Co., New York (1984)

    MATH  Google Scholar 

  17. Islam, M.S., Hossain, M.B.: Numerical solutions of eighth-order bvp by the Galerkin residual technique with Bernstein and Legendre polynomials. Appl. Math. Comput. 261, 48–59 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Liu, G., Wu, T.: Differential quadrature solutions of eighth-order boundary value differential equations. J. Comput. Appl. Math. 145, 223–235 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lund, J.: Symmetrization of the sinc-Galerkin method for boundary value problems. Math. Comput. 47, 571–588 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  21. McArthur, K., Bowers, K.L., Lund, J.: The sinc method in multiple space dimensions: model problems. Numer. Math. 56, 789–816 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Michael, K.: Fast iterative methods for symmetric sinc-Galerkin system. IMA J. Numer. Anal. 19, 357–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Porshokouhi, M., Ghanbari, B., Gholami, M., Rashidi, M.: Numerical solution of eighth order boundary value problems with variational iteration method. Gen. Math. Notes 2, 128–133 (2011)

    MATH  Google Scholar 

  25. Revelli, R., Ridol, L.: Sinc-collocation interpolation method for the simulation of nonlinear waves. Comput. Math. Appl. 46, 1443–1453 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Siddiqi, S., Akram, G.: Solution of eighth-order boundary value problems using the nonpolynomial spline technique. Int. J. Comput. Math. 84, 347–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Siddiqi, S., Twizell, E.: Spline solutions of linear eighth-order boundary value problems. Comput. Methods Appl. Mech. Eng. 131, 309–325 (1996)

    Article  MATH  Google Scholar 

  28. Smith, R.C., Bogar, G.A., Bowers, K.L., Lund, J.: The sinc-Galerkin method for fourth-order differential equations. IAM J. Numer. Anal. 28, 760–788 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stenger, F.: A sinc-Galerkin method of solution of boundary value problems. Math. Comput. 33, 85–109 (1979)

    MathSciNet  MATH  Google Scholar 

  30. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  31. Stenger, F.: Summary of sinc numerical methods. J. Compt. Appl. Math. 121, 379–420 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wazwaz, A.: The numerical solutions of special eighth-order boundary value problems by the modified decomposition method. Neural Parallel Sci. Comput. 8, 133–146 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Yin, G.: Sinc-collocation method with orthogonalization for singular problem-like Poisson. Math. Comput. 62, 21–40 (1994)

    Article  MATH  Google Scholar 

  34. Zarebnia, M.: Sinc numerical solution for the Volterra integro-differential equation. Commun. Nonlinear Sci. Numer. Simul. 15, 700–706 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amgad Abdrabou.

Appendix

Appendix

The functions \(\left\{ g_{8,i}\right\} _{i=0}^8\) in (20) are obtained by expanding the derivatives under the integral (18)

$$\begin{aligned}&g_{8,8}=w(\phi ')^{8},\qquad g_{8,7}=8 w'(\phi ')^{7}+28w (\phi ')^6 \phi '',\\&g_{8,6}=28 w'' (\phi ')^6+168 w'(\phi ')^5\phi ''+210 w (\phi ')^4 (\phi '')^2+56 w (\phi ')^5 \phi ''',\\&g_{8,5} = 56w'''(\phi ')^{5}+420 w''(\phi ')^{4}\phi '' + 840 w'(\phi ')^{3}(\phi '')^{2}+280 w'(\phi ')^{4}\phi '''\\&\quad +\, 420w(\phi ')^{2}(\phi '')^{3}+560 w(\phi ')^{3}\phi ''\phi '''+70 w(\phi ')^{4}\phi ^{(4)},\\&g_{8,4} = 70 w^{(4)} (\phi ')^5 + 560 w''' (\phi ')^3 \phi '' + 560 w'' (\phi ')^3 \phi ''' +1260 w'' (\phi ')^2 (\phi '')^2\\&\quad +\,280 w' (\phi ')^3 \phi ^{(4)}+1680 w' (\phi ')^2 \phi '' \phi '''+840 w' \phi ' (\phi '')^3+56 w (\phi ')^3 \phi ^{(5)}\\&\quad +\, 420 w (\phi ')^2 \phi '' \phi ^{(4)}+280 w (\phi ')^2 (\phi ''')^2 +840 w \phi ' (\phi '')^2 \phi '''+105 w (\phi '')^4,\\&g_{8,3}= 56 w^{(5)} (\phi ')^3 + 420 w^{(4)} (\phi ')^2 \phi '' + 840 w''' \phi ' (\phi '')^2 +560 w''' (\phi ')^2 \phi '''\\&\quad +\,420 w'' (\phi ')^2 \phi ^{(4)}+1680 w'' (\phi ')^2 \phi ' \phi '' \phi '''+420 w'' (\phi '')^3+168 w' (\phi ')^2 \phi ^{(5)}\\&\quad +\, 840 w' \phi ' \phi '' \phi ^{(4)}+560 w' \phi ' (\phi ''')^2 +840 w' (\phi '')^2 \phi ''' + 168 w \phi ' \phi '' \phi ^{(5)}\\&\quad +\, 28 w (\phi ')^2 \phi ^{(6)}+280 w \phi ' \phi ''' \phi ^{(4)}+210 w (\phi '')^2 \phi ^{(4)}+280 w \phi '' (\phi ''')^2,\\&g_{8,2} =28 w^{(6)} (\phi ')^2 + 168 w^{(5)} \phi ' \phi '' + 280 w^{(4)} \phi ' \phi ''' +210 w^{(4)} (\phi '')^2\\&\quad +\,280 w''' \phi ' \phi ^{(4)}+560 w''' \phi '' \phi '''+168 w'' \phi ' \phi ^{(5)} + 420 w'' \phi '' \phi ^{(4)}\\&\quad +\, 280 w'' (\phi ''')^2+ 56 w' \phi ' \phi ^{(6)} +168 w' \phi '' \phi ^{(5)}+ 280 w' \phi ''' \phi ^{(4)}\\&\quad +\, 8 w \phi ' \phi ^{(7)}+ 28 w \phi '' \phi ^{(6)}+56 w \phi ''' \phi ^{(5)}+35 w (\phi ^{(4)})^2,\\&g_{8,1} =8 w^{(7)} \phi ' + 28 w^{(6)}\phi '' + 56 w^{(5)} \phi ''' +70 w^{(4)} \phi ^{(4)}+56 w''' \phi ^{(5)}\\&\quad +\,28 w'' \phi ^{(6)}+ 8 w' \phi ^{(7)}+ w \phi ^{(8)}, \end{aligned}$$

and

$$\begin{aligned} g_{8,0}=w^{(8)}. \end{aligned}$$

Similarly, the functions \(\left\{ g_{7,i}\right\} _{i=0}^7\) in (30) are given by

$$\begin{aligned}&g_{7,7}= p_7 w(\phi ')^{7},\qquad g_{7,6}=7 (p_7 w)'(\phi ')^{6}+21 p_7 w (\phi ')^5 \phi '',\\&g_{7,5}=21 (p_7 w)'' (\phi ')^5+ 105 (p_7 w)'(\phi ')^4\phi ''+105 p_7 w (\phi ')^3 (\phi '')^2+ 35 p_7 w(\phi ')^4 \phi ''',\\&g_{7,4} =35 (p_7 w)'''(\phi ')^4 +210 (p_7 w)''(\phi ')^3 \phi '' + 140 (p_7 w)'(\phi ')^{3} \phi ''' +315 (p_7 w)'(\phi ')^2 (\phi '')^2\\&\quad +\, 35 p_7 w (\phi ')^{3}\phi ^{(4)}+210 p_7 w (\phi ')^2 \phi ''\phi '''+ 105 p_7 w \phi ' (\phi '')^3,\\&g_{7,3} = 35 (p_7 w)^{(4)} (\phi ')^3 +210 (p_7 w)''' (\phi ')^2 \phi ''+315 (p_7 w)'' \phi '(\phi '')^2 +210 (p_7 w)'' (\phi ')^2 \phi '''\\&\quad +\,105 (p_7 w)' (\phi ')^2 \phi ^{(4)}+420 (p_7 w)' \phi ' \phi '' \phi '''+105 (p_7 w)' (\phi '')^3+ 21 p_7 w (\phi ')^2 \phi ^{(5)}\\&\quad +\, 105 p_7 w \phi ' \phi '' \phi ^{(4)}+70 p_7 w \phi ' (\phi ''')^2 +105 p_7 w (\phi '')^2 \phi ''',\\&g_{7,2}= 21 (p_7 w)^{(5)} (\phi ')^2 + 105 (p_7 w)^{(4)}\phi ' \phi '' + 140 (p_7 w)''' \phi ' \phi ''' +105 (p_7 w)''' (\phi '')^2\\&\quad +\,105 (p_7 w)'' \phi ' \phi ^{(4)}+210 (p_7 w)'' \phi '' \phi '''+42 (p_7 w)' \phi ' \phi ^{(5)}+105 (p_7 w)' \phi '' \phi ^{(4)}\\&\quad +\, 70 (p_7 w)' (\phi ''')^2 + 7 p_7 w \phi ' \phi ^{(6)}+ 21 p_7 w \phi '' \phi ^{(5)}+35 p_7 w \phi ''' \phi ^{(4)},\\&\quad g_{7,1} = 7 (p_7 w)^{(6)} \phi ' + 21 (p_7 w)^{(5)} \phi '' + 35 (p_7 w)^{(4)} \phi ''' +35 (p_7 w)''' \phi ^{(4)}\\&\quad +\,21 (p_7 w)'' \phi ^{(5)}+7 (p_7 w)' \phi ^{(6)}+p_7 w \phi ^{(7)}, \end{aligned}$$

and

$$\begin{aligned} g_{7,0}=(p_7 w)^{(7)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gamel, M., Abdrabou, A. Sinc-Galerkin solution to eighth-order boundary value problems. SeMA 76, 249–270 (2019). https://doi.org/10.1007/s40324-018-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-018-0172-2

Keywords

Mathematics Subject Classification

Navigation