Skip to main content

An Overview of the Computation of the Eigenvalues Using Sinc-Methods

  • Chapter
  • First Online:
New Sinc Methods of Numerical Analysis

Part of the book series: Trends in Mathematics ((TM))

  • 381 Accesses

Abstract

In this chapter we give a survey for the use of sinc methods in computing eigenvalues of various types of boundary value problems. The techniques cover the classical sinc-method, regularized sinc-method, Hermite interpolations and the associated regularized technique, sinc-Gaussian, Hermite-Gauss and generalized sinc-Gaussian methods. The application of these methods covers a very wide class of problems, involving, but not limited to, second order differential operators, λ-type problems in \(L^{2}(a,b)\oplus \mathbb {C}^{r}\) spaces, discontinuous problems, multiparameter problems, in self-adjoint and non self-adjoint settings, regular and singular problems. Both horizontal and vertical extensions of the application of the technique are still open and under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annaby, M.H., Asharabi, R.M.: Approximating eigenvalues of discontinuous problems by sampling theorems. J. Numer. Math. 3, 163–183 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Annaby, M.H., Asharabi, R.M.: Computing eigenvalues of boundary-value problems using sinc-Gaussian method. Sampl. Theory Signal Image Proc. 7, 293–311 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Annaby, M.H., Asharabi, R.M.: On sinc-based method in computing eigenvalues of boundary-value problems. SIAM J. Numer. Anal. 46, 671–690 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Annaby, M.H., Asharabi, R.M.: Error analysis associated with uniform Hermite interpolations of bandlimited functions. J. Korean Math. Soc. 47, 1299–1316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Annaby, M.H., Asharabi, R.M.: Truncation, amplitude, and jitter errors on \(\mathbb {R}\) for sampling series derivatives. J. Approxim. Theory 163, 336–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Annaby, M.H., Asharabi, R.M.: Computing eigenvalues of Sturm-Liouville problems by Hermite interpolations. Numer. Algor. 60, 355–367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Annaby, M.H., Asharabi, R.M.: A sinc–Gaussian solver for general second order discontinuous problems. Jpn. J. Ind. Appl. Math. 35, 653–668 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Annaby, M.H., Asharabi, R.M.: Sinc-interpolants in the energy plane for regular solution, Jost function, and its zeros of quantum scattering. J. Math. Phys. 59, 013502 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Annaby, M.H., Tharwat, M.M.: On computing eigenvalues of second-order linear pencils. IMA J. Numer. Anal. 27, 366–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Annaby, M.H., Tharwat, M.M.: Sinc-based computations of eigenvalues of Dirac systems. BIT Numer. Math. 47, 699–713 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Annaby, M.H., Tharwat M.M.: On sampling and Dirac systems with eigenparameter in the boundary conditions. J. Appl. Math. Comput. 36, 291–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Annaby, M.H., Tharwat M.M.: On the computation of the eigenvalues of Dirac systems. Calcolo 49, 221–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Annaby, M.H., Tharwat, M.M.: The Hermite interpolation approach for computing eigenvalues of dirac systems. Math. Comput. Model. 57, 2459–2472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Annaby, M.H., Tharwat, M.M.: A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils. Appl. Numer. Math., 63, 129–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Annaby, M.H., Tharwat, M.M.: A sinc-method computation for eigenvalues of Schrödinger operators with eigenparameter-dependent boundary conditions. Calcolo 54, 23–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Annaby, M.H., Tharwat, M.M.: Sinc–regularized techniques to compute eigenvalues of Schrödinger operators on \(L^{2}(I)\oplus \mathbb {C}^{2}\). Numer. Algor. 80, 795–817 (2019)

    Google Scholar 

  17. Asharabi, R.M.: A Hermite-Gauss technique for approximating eigenvalues of regular Sturm-Liouville problems. J. Inequal. Appl. 2016, 154 (2016). https://doi.org/10.1186/s13660-016-1098-9

  18. Asharabi, R.M.: Generalized sinc-Gaussian sampling involving derivatives. Numer. Algor. 73, 1055–1072 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Asharabi, R.M.: Approximating eigenvalues of boundary value problems by using the Hermite-Gauss sampling method. Electron. Trans. Numer. Anal. 46, 359–374 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Asharabi, R.M.: The use of the sinc-Gaussian sampling formula for approximating the derivatives of analytic functions. Numer. Algor. 81, 293–312 (2019). https://doi.org/10.1007/s11075-018-0548-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Asharabi, R.M., Prestin, J.: A modification of Hermite sampling with a Gaussian multiplier. Numer. Funct. Anal. Optim. 36, 419–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Asharabi, R.M., Tharwat, M.M.: Approximating eigenvalues of Dirac system with discontinuities at several points using Hermite-Gauss method. Numer. Algor. 76, 655–673 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Asharabi, R.M., Tharwat, M.M.: The use of the generalized sinc-Gaussian sampling for numerically computing eigenvalues of periodic Dirac system. Electron. Trans. Numer. Anal. 48, 373–386 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bhrawy, A.H., Tharwat, M.M., Al-Fhaid, A.: Numerical algorithms for computing eigenvalues of discontinuous dirac system using sinc-Gaussian method. Abstr. Appl. Anal. 2012, 13. https://doi.org/10.1155/2012/925134

  25. Boas, R.P.: Entire Functions. Academic, New York (1954)

    MATH  Google Scholar 

  26. Boumenir, A.: Computing eigenvalues of a periodic Sturm-Liouville problem by the Shannon Whittaker sampling theorem. Math. Comp. 68, 1057–1066 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Boumenir, A.: Computing eigenvalues of Lommel-type equations by the sampling method. J. Comput. Anal. Appl. 2, 323–332 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Boumenir, A.: Computing eigenvalues of the string by sampling. Appl. Math. Lett. 13, 29–36 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Boumenir, A.: Higher approximation of eigenvalues by sampling. BIT Numer. Math. 40, 215–225 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Boumenir, A.: The sampling method for Sturm-Liouville problems with the eigenvalue parameter in the boundary condition. Numer. Funct. Anal. Optimiz, 21, 67–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Boumenir, A.: Sampling and eigenvalues of non self adjoint Sturm-Liouville problems. SIAM. J. Sci. Comput. 23, 219–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Boumenir, A., Chanane, B.: Eigenvalues of Sturm-Liouville systems using sampling theory. Appl. Anal. 62, 323–334 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Boumenir, A., Chanane, B.: The computation of negative of eigenvalues of singular Sturm-Liouville problems. IMA J. Numer. Anal. 21, 489–501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Boumenir, A., Tuan, V.K.: Sampling eigenvalues in Hardy spaces. SIAM J. Numer. Anal. 45, 473–483 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Butzer, P.L., Splettstösser, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math. Verein. 90, 1–70 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. In: Marvasti, F. (ed.) Non Uniform Sampling: Theory and Practices, pp. 17–121. Kluwer, New York (2001)

    Chapter  Google Scholar 

  37. Chadan, K.: The interpolation of the wave function and the Jost functions in the energy plane. Il Nuovo Cimento 39, 697–703 (1965)

    Article  MathSciNet  Google Scholar 

  38. Chanane, B.: Computing eigenvalues of regular Sturm-Liouville problems. Appl. Math. Lett. 12, 119–125 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chanane, B.: Computation of eigenvalues of Sturm–Liouville problems with parameter dependent boundary conditions using reularized sampling method. Math. Comput. 74, 1793–1801 (2005)

    Article  MATH  Google Scholar 

  40. Chanane, B.: Computing the spectrum of non self-adjoint Sturm–Liouville problems with parameter dependent boundary conditions. J. Comput. Appl. Math. 206, 229–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chanane, B.: Computing the eigenvalues of singular Sturm–Liouville problems using the regularized sampling method. Appl. Math. Comput. 184, 972–978 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Chanane, B.: Eigenvalues of Sturm–Liouville problems with discontinuity conditions inside a finite interval. Appl. Math. Comput. 188, 1725–1732 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Chanane, B.: Sturm–Liouville problems with impulse effects. Appl. Math. Comput. 190, 610–626 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Eastham, M.S.P.: Theory of Ordinary Differential Equations. Van Nostrand Reinhold, London (1970)

    MATH  Google Scholar 

  45. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, London (1973)

    MATH  Google Scholar 

  46. Eggert, N., Jarratt, M., Lund, J.: Sine function computation of the eigenvalues of Sturm–Liouville problems. J. Comput. Phys. 69, 209–229 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. Fulton, C.T.: Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Roy. Soc. Edin. A 77, 293–308 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  48. Grozev, G.R., Rahman, Q.I.: Reconstruction of entire functions from irregularly spaced sample points. Canad. J. Math. 48, 777–793 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  50. Higgins, J.R., Schmeisser, G., Voss, J.J.: The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl. 2, 333–371 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Hinsen, G.: Irregular sampling of bandlimited L p-functions. J. Approx. Theory 72, 346–364 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jagerman, D.: Bounds for truncation error of the sampling expansion. SIAM. J. Appl. Math. 14, 714–723 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jagerman, D., Fogel, L.: Some general aspects of the sampling theorem. IRE Trans. Inform. Theory 2, 139–146 (1956)

    Article  Google Scholar 

  54. Jarratt, M., Lund, J., Bowers, K.L.: Galerkin schemes and the sine-Galerkin method for singular Sturm–Liouville problems. J. Comput. Phys. 89, 41–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kemp, R.R.D.: Operators on \(L^{2}\oplus \mathbb {C}^{r}\). Can. J. Math. 39, 33–53 (1987)

    Google Scholar 

  56. Kemp, R.R.D., Lee, S.J.: Finite dimensional perturbations of differential expressions. Can. J. Math. 28, 1082–1104 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kerimov, N.B.: A boundary value problem for the Dirac system with a spectral parameter in the boundary conditions. Differ. Eq. 38, 164–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Levitan, B.M., Sargsjan, I.S.: Introduction to spectral theory: selfadjoint ordinary differential operators. In: Translation of Mathematical Monographs, vol. 39. American Mathematical Society, Providence (1975)

    Google Scholar 

  59. Levitan, B.M., Sargsjan, I.S.: Sturm-Liouville and Dirac Operators. Kluwer Acadamic, Dordrecht (1991)

    Book  Google Scholar 

  60. Linden, D.A., Abramson, N.M.: A generalization of the sampling theorem. Inform. Contr. 3, 26–31 (1960). (see also vol. 4, pp. 95–96. 1961 for correction of eq. (1))

    Google Scholar 

  61. Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  62. Lund, J., Riley, B.V.: A sine-collocation method for the computation of the eigenvalues of the radial Schrödinger equation. IMA J. Numer. Anal. 4, 83–98 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  63. Naimark, M.A.: Linear Differential Operators. George Harrap, London (1967)

    MATH  Google Scholar 

  64. Qian, L.: On the regularized Whittaker-Kotel’nikov-Shannon sampling formula. Proc. Amer. Math. Soc. 131, 1169–1176 (2002)

    Article  MATH  Google Scholar 

  65. Qian, L., Creamer, D.B.: A Modification of the sampling series with a Gaussian multiplie. Sampl. Theory Signal Image Process. 5, 1–20 (2006)

    MathSciNet  MATH  Google Scholar 

  66. Qian, L., Creamer, D.B.: Localized sampling in the presence of noise. Appl. Math. Lett. 19, 351–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  67. Schmeisser, G., Stenger, F.: Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal Image Process. 6, 199–221 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. Shin, C.E.: Generalized Hermite interpolation and sampling theorem involving derivatives. Commun. Korean Math. Soc. 17, 731–740 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165–224 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  70. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  71. Tharwat, M.M.: Computing eigenvalues and Hermite interpolation for dirac systems with eigenparameter in boundary conditions. Bound. Value Probl. 2013, 36 (2013). https://doi.org/10.1186/1687-2770-2013-36

  72. Tharwat, M.M.: Sinc approximation of eigenvalues of Sturm–Liouville problems with a Gaussian multiplier. Calcolo 51, 465–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tharwat, M.M.: Approximation of eigenvalues of Dirac systems with eigenparameter in all boundary conditions by sinc-Gaussian method. Appl. Math. Comput. 262, 113–127 (2015)

    MathSciNet  MATH  Google Scholar 

  74. Tharwat, M.M., Bhrawy, A.H.: Computation of eigenvalues of discontinuous Dirac system using Hermite interpolation technique. Adv. Differ. Equ. 2012, 59 (2012). https://doi.org/10.1186/1687-1847-2012-59

  75. Tharwat, M.M., Bhrawy, A.H., Yildirim, A.: Numerical computation of eigenvalues of discontinuous Dirac system using Sinc method with error analysis. Int. J. Comput. Math. 89, 2061–2080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Tharwat, M.M., Bhrawy, A.H., Alofi, A.S.: Computing eigenvalues of discontinuous Sturm-Liouville problems with eigenparameter in all boundary conditions using hermite approximation. J. Abstr. Appl. Anal. 2013, Article ID 498457 (2013). http://dx.doi.org/10.1155/2013/498457

    MathSciNet  MATH  Google Scholar 

  77. Tharwat, M.M., Bhrawy, A.H., Alofi, A.S.: Approximation of Eigenvalues of discontinuous Sturm-Liouville problems with eigenparameter in all boundary conditions. Bound. Value Probl. 2013, 132 (2013). https://doi.org/10.1186/1687-2770-2013-132

  78. Tharwat, M.M., Bhrawy, A.H., Yildirim, A.: Numerical computation of eigenvalues of discontinuous Sturm-Liouville problems with parameter dependent boundary conditions using Sinc method. Numer. Algor. 63, 27–48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  79. Voss, J.: Irregular sampling: error analysis, applications and extensions. Mitt. Math. Sem. Giessen 238, 1–86 (1999)

    MathSciNet  MATH  Google Scholar 

  80. Whittaker, E.: On the functions which are represented by the expansion of the interpolation theory. Proc. Roy. Soc. Edin. Sec. A 35, 181–194 (1915)

    Article  MATH  Google Scholar 

  81. Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Baco Raton (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Annaby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Annaby, M.H., Asharabi, R.M., Tharwat, M.M. (2021). An Overview of the Computation of the Eigenvalues Using Sinc-Methods. In: Baumann, G. (eds) New Sinc Methods of Numerical Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-49716-3_10

Download citation

Publish with us

Policies and ethics