Skip to main content
Log in

Chebyshev Polynomials on Generalized Julia Sets

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let \((f_n)_{n=1}^\infty \) be a sequence of non-linear polynomials satisfying some mild conditions. Furthermore, let \(F_m(z):=(f_m\circ f_{m-1}\cdots \circ f_1)(z)\) and \(\rho _m\) be the leading coefficient of \(F_m\). It is shown that on the Julia set \(J_{(f_n)}\), the Chebyshev polynomial of degree \(\deg {F_m}\) is of the form \(F_m(z)/\rho _m-\tau _m\) for all \(m\in \mathbb {N}\) where \(\tau _m\in \mathbb {C}\). This generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc. Univ. Math. Bull. 49:44–45, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrievskii, V.V.: Chebyshev Polynomials on a system of continua. Constr. Approx. doi:10.1007/s00365-015-9280-8

  2. Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. 6(2), 103–144 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brück, R.: Geometric properties of Julia sets of the composition of polynomials of the form \(z^2 +c_n\). Pac. J. Math. 198, 347–372 (2001)

    Article  MATH  Google Scholar 

  4. Brück, R., Büger, M.: Generalized Iteration. Comput. Methods Funct. Theory 3, 201–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brück, R., Büger, M., Reitz, S.: Random iterations of polynomials of the form \(z^2+c_n\): connectedness of Julia sets. Ergod. Theory Dyn. Syst. 19, 1221–1231 (1999)

    Article  MATH  Google Scholar 

  6. Büger, M.: Self-similarity of Julia sets of the composition of polynomials. Ergod. Theory Dyn. Syst. 17, 1289–1297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carleson, L., Gamelin, T.W.: Complex Dynamics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  8. Comerford, M.: Hyperbolic non-autonomous Julia sets. Ergod. Theory Dyn. Syst. 26, 353–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fornæss, J.E., Sibony, N.: Random iterations of rational functions. Ergod. Theory Dyn. Syst. 11, 687–708 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goncharov, A., Hatinoğlu, B.: Widom Factors. Potential Anal. 42, 671–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamilton, D.H.: Length of Julia curves. Pac. J. Math. 169, 75–93 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kamo, S.O., Borodin, P.A.: Chebyshev polynomials for Julia sets. Mosc. Univ. Math. Bull. 49, 44–45 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Milnor, J.: Dynamics in one complex variables. In: Annals of Mathematics Studies, vol. 160. Princeton University Press, Princeton (2006)

  14. Ostrovskii, I.V., Pakovitch, F., Zaidenberg, M.G.: A remark on complex polynomials of least deviation. Int. Math. Res. Not. 14, 699–703 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peherstorfer, F., Schiefermayr, K.: Description of extremal polynomials on several intervals and their computation I, II. Acta Math. Hung. 83(27–58), 59–83 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Peherstorfer, F., Steinbauer, R.: Orthogonal and \(L_q\)-extremal polynomials on inverse images of polynomial mappings. J. Comput. Appl. Math. 127, 297–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pommerenke, Ch.: Problems in Complex function theory. Bull. Lond. Math. Soc. 4, 354–366 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rugh, H.H.: On the dimensions of conformal repellers. Randomness and parameter dependency. Ann. Math. 168(3), 695–748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sodin, M., Yuditskii, P.: Functions deviating least from zero on closed subsets of the real axis. St. Petersbg. Math. J. 4, 201–249 (1993)

    MathSciNet  Google Scholar 

  20. Totik, V., Varga, T.: Chebyshev and fast decreasing polynomials. Proc. Lond. Math. Soc. doi:10.1112/plms/pdv014

Download references

Acknowledgments

The author thanks the referees for their useful and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökalp Alpan.

Additional information

Communicated by Vladimir V. Andrievskii.

The author is supported by a grant from Tübitak: 115F199.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpan, G. Chebyshev Polynomials on Generalized Julia Sets. Comput. Methods Funct. Theory 16, 387–393 (2016). https://doi.org/10.1007/s40315-015-0145-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-015-0145-8

Keywords

Mathematics Subject Classification

Navigation