Skip to main content

Advertisement

Log in

A fast uniformly accurate global numerical approximation to solution and scaled derivative of system of singularly perturbed problems with multiple diffusion parameters on generalized adaptive mesh

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The aim of this article is to analyze a robust numerical approximation to the solution along with the scaled first derivative (physically known as diffusive flux) of its components of a weakly coupled system of singularly perturbed convection-diffusion boundary-value-problems having diffusion parameters of different orders of magnitude. To accomplish this, we construct a generalized S-mesh, a general form of the piecewise-uniform Shishkin mesh, which appropriately resolves the overlapping boundary layers caused by the multiple diffusion parameters. For discretizing the governing system of equations, we confine our study to the upwind finite difference scheme. At first, we prove that the numerical solution converges uniformly in \(C^0\)-norm with faster convergence rate on the generalized S-mesh than the standard Shishkin mesh. Afterwards, we prove uniform convergence of the global numerical approximation in an appropriate weighted \(C^1\)-norm with same order of accuracy, which essentially establishes global accuracy to the numerical solution as well as the scaled discrete derivative. We confirm the theoretical findings by conducting extensive numerical experiments on two test examples for both equal and unequal values of diffusion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Andreev VB (2002) Pointwise and weighted a priori estimates of the solution and its first derivative for a singularly perturbed convection-diffusion equation. Differ. Equ. 38:918–929

    Article  MathSciNet  Google Scholar 

  • Bose S, Mukherjee K (2022) Numerical approximation of system of singularly perturbed convection-diffusion problems on different layer-adapted meshes. In: Das B, Patgiri R, Bandyopadhyay S, Balas VE (eds) Modeling, Simulation and Optimization. Springer Nature, Singapore, pp 523–535

  • Cen Z (2005) Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection–diffusion equations. Int. J. Comput. Math. 82(2):177–192

    Article  MathSciNet  MATH  Google Scholar 

  • Christy R, Tamilselvan A, Geetha N (2020) An analysis of overlapping schwarz method for a weakly coupled system of singularly perturbed convection–diffusion equations. Internat. J. Numer. Methods Fluids 92(1):528–544

    Article  MathSciNet  Google Scholar 

  • Ervin V, Layton W (1987) On the approximation of derivatives of singularly perturbed boundary value problems. SIAM J. Sci. Stat. Comput. 8:265–277

    Article  MathSciNet  MATH  Google Scholar 

  • Farrell PA, Hegarty AF, Miller JJH, ORiordan E, Shishkin GI (2000) Robust computational techniques for boundary layers. Chapman & Hall/CRC Press

  • Kellogg RB, Tsan A (1978) Analysis of some differences approximations for a singular perturbation problem without turning point. Math. Comp. 32(144):1025–1039

    Article  MathSciNet  MATH  Google Scholar 

  • Kopteva N, Stynes M (2001) Approximation of derivatives in a convection-diffusion two-point boundary value problem. Appl. Numer. Math. 39:47–60

    Article  MathSciNet  MATH  Google Scholar 

  • Linß T (2007) Analysis of an upwind finite-difference scheme for a system of coupled singularly perturbed convection–diffusion equations. Computing 79:23–32

    Article  MathSciNet  MATH  Google Scholar 

  • Madden N, Stynes M (2003) A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction-diffusion problems. IMA J Numer Anal 23

  • Manassero M, Shackelford CD (1994) The role of diffusion in contaminant migration through soil barriers. Riv. Ital. Geotec. 28(1):5–31

    Google Scholar 

  • Miller JJH, O’Riordan E, Shishkin GI (1996) Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Mohapatra J, Natesan S (2010) Parameter-uniform numerical method for global solution and global normalized flux of singularly perturbed boundary value problems using grid equidistribution. Comput. Math. Appl. 60:1924–1939

    Article  MathSciNet  MATH  Google Scholar 

  • O’Riordan E, Pickett ML (2017) Numerical approximations to the scaled first derivatives of a two parameter singularly perturbed problem. J Comput Appl Math 347

  • Pao CV (1992) Nonlinear Parabolic and Elliptic Equations. Springer, US, Boston, MA

    MATH  Google Scholar 

  • Priyadharshini RM, Ramanujam N (2009a) Approximation of derivative for a singularly perturbed second-order ordinary differential equation of robin type with discontinuous convection coefficient and source term. Numer Math Theory Methods Appl 2(1):100–118

  • Priyadharshini RM, Ramanujam N (2009b) Approximation of derivative to a singularly perturbed second-order ordinary differential equation with discontinuous convection coefficient using hybrid difference scheme. Int J Comput Math 86(8):1355–1365

  • Priyadharshini RM, Ramanujam N (2013) Uniformly-convergent numerical methods for a system of coupled singularly perturbed convection-diffusion equations with mixed type boundary conditions. Math. Model. Anal. 18(5):577–598

    Article  MathSciNet  MATH  Google Scholar 

  • Priyadharshini RM, Ramanujam N, Shanthi V (2009) Approximation of derivative in a system of singularly perturbed convection-diffusion equations. J. Appl. Math. Comput. 29(1–2):137–151

    Article  MathSciNet  MATH  Google Scholar 

  • Shackelford CD, Daniel DE (1991) Diffusion in saturated soil. I: Background. J. Geotech. Eng., 117(3):467–484

  • Subburayan V (2016) A robust computational method for system of singularly perturbed differential difference equations with discontinuous convection coefficients. Int. J. Comput. Methods 13(4):1641008

    Article  MathSciNet  MATH  Google Scholar 

  • Tamilselvan A, Ramanujam N (2010) A parameter uniform numerical method for a system of singularly perturbed convection-diffusion equations with discontinuous convection coefficients. Int. J. Comput. Math. 87(6):1374–1388

    Article  MathSciNet  MATH  Google Scholar 

  • Tamilselvan A, Ramanujam N, Shanthi V (2007) A numerical method for singularly perturbed weakly coupled system of two second order ordinary differential equations with discontinuous source term. J. Comput. Appl. Math. 202(1):203–216

    Article  MathSciNet  MATH  Google Scholar 

  • Vulanović R (2001a) A higher-order scheme for quasilinear boundary value problems with two small parameters. Computing 67:287–303

  • Vulanović R (2001b) A priori meshes for singularly perturbed quasilinear two-point boundary value problems. IMA J Numer Anal 21(1)

  • Yang ZP, Pao CV (1999) Positive solutions and dynamics of some reaction diffusion models in hiv transmission. Nonlinear Anal 35(3)

Download references

Acknowledgements

The authors express their sincere thanks to the anonymous reviewers for their valuable comments and suggestions. The first author wishes to acknowledge Council of Scientific and Industrial Research, India, for the research grant 09/1187(0004)/2019-EMR-I during his Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Zhaosheng Feng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Lemma 6

Proof

\((\mathbb {G}_{\varepsilon _2, i+1}-\mathbb {G}_{\varepsilon _2, i})=-\frac{\uplambda h_{i+1}}{\varepsilon _2}\mathbb {G}_{\varepsilon _2, i+1}\). So we have

$$\begin{aligned}&\texttt{L}_{x, \varepsilon _1}^{N}{{{\textbf {G}}}}_{\varepsilon _2, i} \!=\!\varepsilon _1 \frac{2\uplambda }{\varepsilon _2 (h_i+h_{i+1})}(\mathbb {G}_{\varepsilon _2, i+1} \!\!-\!\mathbb {G}_{\varepsilon _2, i})\!+\!\texttt{p}_{11}(x_i)\frac{\uplambda }{\varepsilon _2}\mathbb {G}_{\varepsilon _2, i+1}\!\!+\!(\texttt{q}_{11}(x_i)\!+\!\texttt{q}_{12}(x_i))\mathbb {G}_{\varepsilon _2, i}\\&\ge \text {C}\frac{\uplambda }{\varepsilon _2}\mathbb {G}_{\varepsilon _2, i+1}\Bigg [\texttt{p}_{11}(x_i)-\frac{2\varepsilon _1 \uplambda h_{i+1}}{\varepsilon _2 (h_i+h_{i+1})}\Bigg ] \ge \frac{\text {C} \uplambda \mathbb {G}_{\varepsilon _2, i}}{\varepsilon _2 + \uplambda h_{i+1}} \ge \frac{\text {C} \mathbb {G}_{\varepsilon _2, i}}{\max \{\varepsilon _2, h_{i+1}\}}. \end{aligned}$$

Similarly, one can establish the other inequality for \(\texttt{L}_{x, \varepsilon _2}^{N}\varvec{\mathbb {G}}_{\varepsilon _2, i}\). Also, \((\mathbb {G}_{\varepsilon _1, i+1}-\mathbb {G}_{\varepsilon _1, i})=-\frac{\uplambda h_{i+1}}{\varepsilon _1}\mathbb {G}_{\varepsilon _1, i+1}\). It implies that

$$\begin{aligned}&\texttt{L}_{x, \varepsilon _2}^{N}{{\textbf {G}}}_{\varepsilon _1, i}\!=\!\!-\varepsilon _2 \frac{2\uplambda }{\varepsilon _1 (h_i\!+\!h_{i\!+\!1})}(\mathbb {G}_{\varepsilon _1, i\!+\!1}\!\!-\!\mathbb {G}_{\varepsilon _1, i})\!-\!\texttt{p}_{22}(x_i)\frac{\uplambda }{\varepsilon _1}\mathbb {G}_{\varepsilon _1, i+1}\!\!+\!(\texttt{q}_{21}(x_i)\!-\!\texttt{q}_{22}(x_i))\mathbb {G}_{\varepsilon _1, i}\\&\ge \frac{\uplambda }{\varepsilon _1}\mathbb {G}_{\varepsilon _1, i+1}\Bigg [\frac{2\varepsilon _2 \uplambda h_{i+1}}{\varepsilon _1 (h_i+h_{i+1})}-\texttt{p}_{22}(x_i)\Bigg ]-\text {C}_3\mathbb {G}_{\varepsilon _1, i} \\&\ge \text {C}_4 \frac{\uplambda }{\varepsilon _1}\mathbb {G}_{\varepsilon _1, i+1}-\text {C}_3\mathbb {G}_{\varepsilon _1, i}, \quad \text {since }\varepsilon _1=o(\varepsilon _2), \text {C}_4\text { can be sufficiently large}\\&\ge \frac{\text {C} \uplambda \mathbb {G}_{\varepsilon _1, i}}{\varepsilon _1 + \uplambda h_{i+1}} \ge \frac{\text {C} \mathbb {G}_{\varepsilon _1, i}}{\max \{\varepsilon _1, h_{i+1}\}}. \end{aligned}$$

\(\square \)

Appendix B Proof of Lemma 7

Proof

  1. (i)

    For \(1 \le i < N_1\), we have

    $$\begin{aligned} \mathbb {G}_{\varepsilon _1, i} \le e^{\frac{-\uplambda x_i}{\varepsilon _1 \!+\! \uplambda h_i}}=e^{\frac{-\uplambda x_i}{\varepsilon _1 \!+\! \uplambda \texttt{h}^1}} \!\le \! e^{\frac{-2i{N_1}^{-1}\ln ^{\Bbbk } N}{1+2N_{1}^{-1}\ln ^{\Bbbk } N}} = (\ln ^{\Bbbk -1} N)^{\frac{-2i{N_1}^{-1}}{1+2N_{1}^{-1}\ln ^{\Bbbk } N}} \le \text {C} (\ln ^{\Bbbk -1} N)^{{-2iN_{1}^{-1}}}. \end{aligned}$$
  2. (ii)

    For \(\displaystyle \sum \nolimits _{j=1}^{n-1}N_j \le i < \sum \nolimits _{j=1}^{n}N_j, ~\forall ~n \in \{ 2, 3, ..., \Bbbk \}\), and proceeding as above, we get

    $$\begin{aligned} \mathbb {G}_{\varepsilon _1, i}&\le e^{\frac{-\uplambda x_i}{\varepsilon _1 + \uplambda h_i}} =e^{\frac{-\uplambda x_i}{\varepsilon _1 + \uplambda \texttt{h}^{n}}}\nonumber \\&\le (\ln ^{\Bbbk -n+1}N)^{\frac{-2\big (1-(i-\sum _{j=1}^{n-1}N_j)N_n^{-1}\big )}{1+2N_{n}^{-1}(\ln ^{n-1}N -\ln ^{n} N)}}(\ln ^{\Bbbk -n}N)^{\frac{-2\big (i-\sum _{j=1}^{n-1}N_j\big )N_n^{-1}}{1+2N_{n}^{-1}(\ln ^{n-1}N -\ln ^{n} N)}}, \nonumber \\&\le \text {C} (\ln ^{\Bbbk -n+1}N)^{-2\big (1-(i-\sum _{j=1}^{n-1}N_j){N_{n}^{-1}}\big )}(\ln ^{\Bbbk -n}N)^{{-2\big (i-\sum _{j=1}^{n-1}N_j\big )N_{n}^{-1}}}. \end{aligned}$$
    (B.1)

    Since, \(\ln ^{\Bbbk -n+1}N<\ln ^{\Bbbk -n}N\), the inequality in (B.1) implies that

    $$\begin{aligned} \mathbb {G}_{\varepsilon _1, i}&\le {\text {C}(\ln ^{\Bbbk -n+1}N)^{-2\big (1-(i-\sum _{j=1}^{n-1}N_j)N_n^{-1}\big )} (\ln ^{\Bbbk -n+1}N)^{-2\big (i-\sum _{j=1}^{n-1}N_j\big )N_n^{-1}}}\nonumber \\ {}&\le {\text {C}(\ln ^{\Bbbk -n+1} N)^{-2}}\le \text {C}(\ln ^{\Bbbk -n+1} N)^{-1}. \end{aligned}$$
    (B.2)

    In particular, let \(\displaystyle i=\sum \nolimits _{j=1}^{\Bbbk }N_j-1\). Then, from the inequality in (B.1) for \(n=\Bbbk \), we have

    $$\begin{aligned} \mathbb {G}_{\varepsilon _1, i}&\le {\text {C}(\ln N)^{-2(1-(N_{\Bbbk }-1)N_{\Bbbk }^{-1})} N^{-2(N_{\Bbbk }-1)N_{\Bbbk }^{-1}}}\nonumber \\&= {\text {C}(\ln N)^{-2N_{\Bbbk }^{-1}} N^{-2+2N_{\Bbbk }^{-1}}}\nonumber \\&\le \text {C} N^{-2+2N_{\Bbbk }^{-1}}\le \text {C} N^{-1}. \end{aligned}$$
    (B.3)
  3. (iii)

    For \(\displaystyle \sum \nolimits _{j=1}^{\Bbbk }N_j \le i < \sum \nolimits _{j=1}^{\Bbbk +1}N_j\), we have

    $$\begin{aligned} \mathbb {G}_{\varepsilon _2, i}&\le e^{\frac{-\uplambda x_i}{\varepsilon _2 + \uplambda h_i}}= e^{\frac{-\uplambda x_i}{\varepsilon _2 + \uplambda \texttt{h}^{\Bbbk +1}}}\\&\le e^{\frac{-2(i-\sum _{j=1}^{\Bbbk }N_j)N_{\Bbbk +1}^{-1}\ln ^{\Bbbk } N}{1+2N_{\Bbbk +1}^{-1}\ln ^{\Bbbk } N}} \\&= (\ln ^{\Bbbk -1} N)^{\frac{-2(i-\sum _{j=1}^{\Bbbk }N_j)N_{\Bbbk +1}^{-1}}{1+2N_{\Bbbk +1}^{-1}\ln ^{\Bbbk } N}} \\&\le \text {C} (\ln ^{\Bbbk -1} N)^{{-2(i-\sum _{j=1}^{\Bbbk }N_j)N_{\Bbbk +1}^{-1}}}. \end{aligned}$$
  4. (iv)

    For \(\displaystyle \sum \nolimits _{j=1}^{\Bbbk +n-1}N_j \le i < \sum \nolimits _{j=1}^{\Bbbk +n}N_j, ~\forall ~n \in \{ 2, 3, ..., \Bbbk \},\)

    $$\begin{aligned} \mathbb {G}_{\varepsilon _2, i}&\le e^{\frac{-\uplambda x_i}{\varepsilon _2 + \uplambda h_i}} =e^{\frac{-\uplambda x_i}{\varepsilon _2 + \uplambda H^{\Bbbk +n}}}\nonumber \\&\le (\ln ^{\Bbbk -n+1}N)^{\frac{-2\big (1-(i-\sum _{j=1}^{\Bbbk +n-1}N_j)N_{\Bbbk +n}^{-1}\big )}{1+2N_{\Bbbk +n}^{-1}(\ln ^{n-1}N -\ln ^{n} N)}}(\ln ^{\Bbbk -n}N)^{\frac{-2\big (i-\sum _{j=1}^{\Bbbk +n-1}N_j\big )N_{\Bbbk +n}^{-1}}{1+2N_{\Bbbk +n}^{-1}(\ln ^{n-1}N -\ln ^{n} N)}}, \nonumber \\&\le \text {C} (\ln ^{\Bbbk -n+1}N)^{-2\Big (1-(i-\sum _{j=1}^{\Bbbk +n-1}N_j){N_{\Bbbk +n}^{-1}}\Big )}(\ln ^{\Bbbk -n}N)^{{-2\big (i-\sum _{j=1}^{\Bbbk +n-1}N_j\big )N_{\Bbbk +n}^{-1}}}. \end{aligned}$$
    (B.4)

    Since, \(\ln ^{\Bbbk -n+1}N<\ln ^{\Bbbk -n}N\), the inequality in (B.4) implies that

    $$\begin{aligned} \mathbb {G}_{\varepsilon _2, i}&\le {\text {C}(\ln ^{\Bbbk -n+1}N)^{-2\big (1-(i-\sum _{j=1}^{\Bbbk +n-1}N_j)N_{\Bbbk +n}^{-1}\big )} (\ln ^{\Bbbk -n+1}N)^{-2\big (i-\sum _{j=1}^{\Bbbk +n-1}N_j\big )N_{\Bbbk +n}^{-1}}}\nonumber \\ {}&\le \text {C}(\ln ^{\Bbbk -n+1} N)^{-2} \le \text {C}(\ln ^{\Bbbk -n+1} N)^{-1}. \end{aligned}$$
    (B.5)

    Let \(\displaystyle i=\sum \nolimits _{j=1}^{2\Bbbk }N_j -1=N/2-1\). Then, from the inequality in (B.4) for \(n=\Bbbk \), we have

    $$\begin{aligned} \mathbb {G}_{\varepsilon _2, i}&\le {\text {C}(\ln N)^{-2(1-(N_{2\Bbbk }-1)N_{2\Bbbk }^{-1})} N^{-2(N_{2\Bbbk }-1)N_{2\Bbbk }^{-1}}}\nonumber \\&= {\text {C}(\ln N)^{-2N_{2\Bbbk }^{-1}} N^{-2+2N_{2\Bbbk }^{-1}}}\nonumber \\&\le \text {C} N^{-2+2N_{2\Bbbk }^{-1}}\le \text {C} N^{-1}. \end{aligned}$$
    (B.6)

This completes the proof. \(\square \)

Appendix C Proof of Lemma 8

Proof

We define the truncation error associated with the smooth component \(\varvec{S}\) by

$$\begin{aligned} \texttt{L}_{x, {\varepsilon _1}}^{N}(\varvec{S}-\varvec{s})(x_i) =\texttt{L}_{x, \varepsilon _1}\varvec{s}-\texttt{L}_{x, \varepsilon _1}^{N}\varvec{s} =\Big (\texttt{L}_{x, \varepsilon _1}-\texttt{L}_{x, \varepsilon _1}^{N}\Big )\varvec{s}. \end{aligned}$$

Then, by using the bounds of derivatives of \(\varvec{s}\) given in Lemma  3, we get

$$\begin{aligned} \Bigg |\texttt{L}_{x, \varepsilon _1}^{N}(\varvec{S}-\varvec{s})(x_i)\Bigg |\le \frac{\varepsilon _1}{3}(h_i+h_{i+1})\Bigg |\Bigg |\frac{d^3 s_1}{d x^3}\Bigg |\Bigg |+\frac{h_{i+1}}{2}\texttt{p}_{11}(x_i)\Bigg |\Bigg |\frac{d^2 s_1}{d x^2}\Bigg |\Bigg | \le \text {C}N^{-1}. \end{aligned}$$

Similarly, we can prove that \( \Big |\texttt{L}_{x, \varepsilon _2}^{N}(\varvec{S}-\varvec{s})(x_i)\Big |\le \text {C}N^{-1}. \) Now, we derive the desired bounds for the truncation error associated with the layer component \(\varvec{R}\).

  1. (i)

    Let \(x_i \in (0,\eta _{\varepsilon _1}^1).\) For \(\displaystyle 1 \le i < N_1\), by using Lemma 3 and the method of [ Kellogg and Tsan (1978), Lemma 3.3] and since \(\frac{\varepsilon _1}{\varepsilon _2} <1, \text {sinh}x \le x,\) we get

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _1}^{N}(\varvec{R}-\varvec{r})(x_i)\Big |&\le \text {C} \Bigg [\int _{x_{i-1}}^{x_{i+1}}(\varepsilon _1^{-2}\mathfrak {B}_{\varepsilon _1}(x)+ \varepsilon _2^{-2}\mathfrak {B}_{\varepsilon _2}(x))dx\Bigg ]\nonumber \\&\le \text {C} \Bigg [\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})\text {sinh}(\uplambda \texttt{h}^{1}/\varepsilon _1)+ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})\text {sinh}(\uplambda \texttt{h}^{1}/\varepsilon _2)\Bigg ]\nonumber \\&\le \text {C} \Bigg [\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})(\uplambda \texttt{h}^{1}/\varepsilon _1)+ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})(\uplambda \texttt{h}^{1}/\varepsilon _2)\Bigg ]\nonumber \\&\le \text {C} \Bigg [(\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})+\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i}))N^{-1}\ln ^{\Bbbk } N\Bigg ]. \end{aligned}$$
    (C.1)

    Now, for \(\displaystyle \sum \nolimits _{j=1}^{n-1}N_{j} \le i < \sum \nolimits _{j=1}^{n}N_{j}, \forall ~n \in \{2, ..., \Bbbk \},\) since \(\eta _{\varepsilon _1}^1< \frac{\eta _{\varepsilon _2}^\Bbbk }{2} \Rightarrow \frac{\varepsilon _1}{\varepsilon _2} \ln N < \ln ^{\Bbbk }N\), we get \(\frac{\varepsilon _1}{\varepsilon _2} (\ln ^n N-\ln ^{(n+1)}N) < \ln ^{\Bbbk }N,\) and proceeding as above we get

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _1}^{N}(\varvec{R}-\varvec{r})(x_i)\Big |&\le \text {C} \Bigg [\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})(\uplambda \texttt{h}^{n}/\varepsilon _1)+ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})(\uplambda \texttt{h}^{n}/\varepsilon _2)\Bigg ]\nonumber \\ {}&\le \text {C} \Bigg [\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})N^{-1}(\ln ^{\Bbbk -n+1}N-\ln ^{\Bbbk -n+2}N)\nonumber \\ {}&+\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})(\varepsilon _1/\varepsilon _2)N^{-1}(\ln ^{\Bbbk -n+1}N-\ln ^{\Bbbk -n+2}N) \Bigg ]\nonumber \\&\le \text {C} \Bigg [\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})N^{-1}(\ln ^{\Bbbk -n+1}N-\ln ^{\Bbbk -n+2}N)\nonumber \\ {}&+\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})N^{-1}\ln ^{\Bbbk }N \Bigg ]. \end{aligned}$$
    (C.2)

    Similarly, for \(\displaystyle 1 \le i < N_1\), we have

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _2}^{N}(\varvec{R}-\varvec{r})(x_i)\Big | \le \text {C} \Bigg [(\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})+\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i}))N^{-1}\ln ^{\Bbbk } N\Bigg ], \end{aligned}$$
    (C.3)

    and, for \(\displaystyle \sum \nolimits _{j=1}^{n-1}N_{j} \le i < \sum \nolimits _{j=1}^{n}N_{j}, \forall ~n \in \{ 2, ..., \Bbbk \}\),

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _2}^{N}(\varvec{R}-\varvec{r})(x_i)\Big |&\le \text {C} \Bigg [\varepsilon _1^{-1}\mathfrak {B}_{\varepsilon _1}(x_{i})N^{-1}(\ln ^{\Bbbk -n+1}N-\ln ^{\Bbbk -n+2}N)\nonumber \\ {}&\quad \, +\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})N^{-1}\ln ^{\Bbbk }N \Bigg ]. \end{aligned}$$
    (C.4)
  2. (ii)

    Let \(x_i \in [\eta _{\varepsilon _1}^1, \eta _{\varepsilon _2}^1).\) Since \(\varepsilon _1^{-2}\exp (-\uplambda x/\varepsilon _1) \le \varepsilon _2^{-2}\exp (-\uplambda x/\varepsilon _2)\), for \(x > 2\varepsilon _1/\uplambda \), then we obtain, for \(\displaystyle \sum \nolimits _{j=1}^{\Bbbk }N_{j} \le i < \sum \nolimits _{j=1}^{\Bbbk +1}N_{j},\) that

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _1}^{N}(\varvec{R}-\varvec{r})(x_i)\Big |&\le \text {C} \Big [\int _{x_{i-1}}^{x_{i+1}} \varepsilon _2^{-2}\mathfrak {B}_{\varepsilon _2}(x)dx\Big ]\nonumber \\&\le \text {C} \Big [\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})(\uplambda \texttt{h}^{\Bbbk +1}/\varepsilon _2)\Big ]\nonumber \\&\le \text {C}\Big [ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_i)N^{-1}\ln ^{\Bbbk }N\Big ], \quad \uplambda \texttt{h}^{\Bbbk +1} \le \text {C}\varepsilon _2N^{-1}\ln ^{\Bbbk } N. \end{aligned}$$
    (C.5)

    Similarly, for \(\displaystyle \sum \nolimits _{j=1}^{\Bbbk +n-1}N_{j} \le i < \sum \nolimits _{j=1}^{\Bbbk +n}N_{j}, \forall ~n \in \{2, ..., \Bbbk \},\)

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _1}^{N}(\varvec{R}-\varvec{r})(x_i)\Big |&\le \text {C} \Big [\varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_{i})(\uplambda \texttt{h}^{\Bbbk +n}/\varepsilon _2)\Big ]\nonumber \\&\le \text {C}\Big [ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_i)N^{-1}(\ln ^{\Bbbk -n+1}N-\ln ^{\Bbbk -n+2}N) \Big ]. \end{aligned}$$
    (C.6)

    Apply same technique for \(\displaystyle \sum \nolimits _{j=1}^{\Bbbk }N_{j} \le i < \sum \nolimits _{j=1}^{\Bbbk +1}N_{j},\) we have

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _2}^{N}(\varvec{R}-\varvec{r})(x_i)\Big |&\le \text {C}\Big [ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_i)N^{-1}\ln ^{\Bbbk }N\Big ], \end{aligned}$$
    (C.7)

    and for \(\displaystyle \sum _{j=1}^{\Bbbk +n-1}N_{j} \le i < \sum _{j=1}^{\Bbbk +n}N_{j}, \forall ~n \in \{2, ..., \Bbbk \},\)

    $$\begin{aligned} \Big |\texttt{L}_{x,\varepsilon _2}^{N}(\varvec{R}-\varvec{r})(x_i)\Big |\le \text {C}\Big [ \varepsilon _2^{-1}\mathfrak {B}_{\varepsilon _2}(x_i)N^{-1}(\ln ^{\Bbbk -n+1}N-\ln ^{\Bbbk -n+2}N)\Big ]. \end{aligned}$$
    (C.8)

Thus, we obtain the required truncation error bounds for \(\varvec{R}\) from the inequalities (C.1)–(C.8). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Mukherjee, K. A fast uniformly accurate global numerical approximation to solution and scaled derivative of system of singularly perturbed problems with multiple diffusion parameters on generalized adaptive mesh. Comp. Appl. Math. 42, 180 (2023). https://doi.org/10.1007/s40314-023-02218-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02218-9

Keywords

Mathematics Subject Classification

Navigation