Skip to main content
Log in

Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a semi-analytical method called the local fractional Laplace homotopy analysis method (LFLHAM) for solving wave equations with local fractional derivatives. The LFLHAM is based on the homotopy analysis method and the local fractional Laplace transform method, respectively. The proposed analytical method was a modification of the homotopy analysis method and converged rapidly within a few iterations. The nonzero convergence-control parameter was used to adjust the convergence of the series solutions. Three examples of non-differentiable wave equations were provided to demonstrate the efficiency and the high accuracy of the proposed technique. The results obtained were completely in agreement with the results in the existing methods and their qualitative and quantitative comparison of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Algahtani OJJ (2016) Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model. Chaos Solitons Fract 89:552–559

    Article  MathSciNet  MATH  Google Scholar 

  • Atangana A (2016) On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Appl Math Comput 273:948–956

    MathSciNet  MATH  Google Scholar 

  • Atangana A, Baleanu D (2016) New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm Sci 20(2):763–769

    Article  Google Scholar 

  • Atangana A, Gómez-Aguilar JF (2017) Numerical approximation of Riemann–Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu. Numer Methods Partial Differ Equ. https://doi.org/10.1002/num.22195

    Article  MATH  Google Scholar 

  • Atangana A, Koca I (2016) Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fract 89:447–454

    Article  MathSciNet  MATH  Google Scholar 

  • Baleanu D, Güvenc ZB, Tenreiro, Machado JA (2010) New trends in nanotechnology and fractional calculuc applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 2:731–85

    Google Scholar 

  • Chen Y, Yan Y, Zhang K (2010) On the local fractional derivative. J Math Anal Appl 362:17–33

    Article  MathSciNet  MATH  Google Scholar 

  • Golmankhaneh AK, Yang XJ, Baleanu D (2015) Einsten field equations within local fractional calculus. Rom J Phys 60:22–31

    Google Scholar 

  • Hemeda AA, Eladdad EE, Lairje IA (2018) Local fractional analytical methods for solving wave equations with local fractional derivative. Math Methods Appl Sci. https://doi.org/10.1002/mma.4756

    Article  MathSciNet  MATH  Google Scholar 

  • Hu M-S, Ravi PA, Yang XJ (2012) Local fractional Fourier series with applications to wave equation in fractal vibrating string. Abstr Appl Anal 2012:1–15 (article ID: 567401)

    MathSciNet  Google Scholar 

  • Jafari H, Kamil HJ (2015) Local fractional variational iteration method for solving nonlinear partial differential equations within local fractional operators. Appl Appl Math Int J 10(2):1055–1065

    MathSciNet  MATH  Google Scholar 

  • Jafari H, Tajadodi H, Johnston SJ (2015a) A decomposition method for solving diffusion equationa via local fractional time derivative. Therm Sci 19(1):S123–S129

    Article  Google Scholar 

  • Jafari H, Ünlü C, Moshoa SP, Khalique CM (2015b) Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators. Entropy 2015:1–9 (article ID: 309870)

    Google Scholar 

  • Jassim HK (2015) Local fractional Laplace decomposition method for nonhomogeneous heat equation arising in fractal heat flow with local fractional derivative. Int J Adv Appl Math Mech 2:1–7

    MathSciNet  MATH  Google Scholar 

  • Jumarie G (2001) Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos Solitons Fract 12:2577–2587

    Article  MathSciNet  MATH  Google Scholar 

  • Jumarie G (2005a) On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion. Appl Math Lett 18:817–826

    Article  MathSciNet  MATH  Google Scholar 

  • Jumarie G (2005b) On the representation of fractional Brownian motion as an integral with respect to \((dt)^a\). Appl Math Lett 18:739–748

    Article  MathSciNet  MATH  Google Scholar 

  • Jumarie G (2009) Laplace’s transform of fractional order via Mittag–Leffler function and modified Riemann–Liouville derivative. Appl Math Lett 22:1659–1664

    Article  MathSciNet  MATH  Google Scholar 

  • Kolwankar KM, Gangal AD (1996) Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 6:505–513

    Article  MathSciNet  MATH  Google Scholar 

  • Kolwankar KM, Gangal AD (1997) Hölder exponents of irregular signals and local fractional derivatives. Pramana J Phys 48:49–68

    Article  Google Scholar 

  • Kolwankar KM, Gangal AD (1998) Local fractional Fokker–Planck equation. Phys Rev Lett 80:214–217

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar D, Singh J, Mehmet HB, Bulut H (2017a) An effictive computational approach to local fractional telegraph equations. Nonlinear Sci Lett A 8(2):200–206

    Google Scholar 

  • Kumar D, Singh J, Baleanu D (2017b) A hybrid computational approach for Klein–Gordon equations on Canto sets. Nonlinnear Dyn 87:511–517

    Article  MATH  Google Scholar 

  • Liao SJ (1995) An approximate solution technique not depending on small parameters: a special example. Int J Non-Linear Mech 30:371–380

    Article  MathSciNet  MATH  Google Scholar 

  • Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. CRC Press, Boca Raton

    Book  Google Scholar 

  • Liao SJ (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 169(2):1186–1194

    MathSciNet  MATH  Google Scholar 

  • Liao SJ (2010) An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 362:2003–2016

    Article  MathSciNet  MATH  Google Scholar 

  • Liu K, Hu RJ, Cattani C, Xie GN, Yang XJ, Zhao Y (2014) Local fractional Z-transforms with applications to signals on Cantor sets. Abstr Appl Anal 2013:1–6 (article ID: 638648)

    MathSciNet  MATH  Google Scholar 

  • Losada J, Nieto JJ (2015) Properties of the new fractional derivative without singular kernel. Progr Fract Differ Appl 2(1):87–92

    Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  MathSciNet  MATH  Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus. Acadamic Press, New York

    MATH  Google Scholar 

  • Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39(10–11):3075–3093

    Article  MathSciNet  Google Scholar 

  • Raja MAZ, Samar R, Manzar MA, Shah SM (2016) Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation. Math Compute Simul. https://doi.org/10.1016/j.matcom.2016.08.002

    Article  Google Scholar 

  • Singh J, Kumar D, Nieto JJ (2016) A reliable algorithm for local fractional Tricomi equation arising in fractal transonic flow. Entropy 18:1–8

    Article  MathSciNet  Google Scholar 

  • Srivastava HM, Golmankhaneh AK, Baleanu D, Yang XJ (2014) Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr Appl Anal 2014:1–7 (article ID: 176395)

    MathSciNet  MATH  Google Scholar 

  • Wang SQ, Yang YJ, Kamil HJ (2014) Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative. Abstr Appl Anal 2014(2014):1–7

    MathSciNet  MATH  Google Scholar 

  • Yan SP, Jafari H, Jassim HK (2014) Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators. Adv Math Phys 2014(2014):1–8

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ (2011a) Local fractional fucntional analysis and its applications. Asian Academic, Hong Kong

    Google Scholar 

  • Yang XJ (2011b) Local fractional Laplace transform based on the local fractional calculus. In: Shen G, Huang X (eds) Advanced Research on computer science and information engineering (communications in computer and information science, vol 153. Springer, Berlin

    Google Scholar 

  • Yang XJ (2012) Advance local fractional calculus and its applications. World Science Publisher, New York

    Google Scholar 

  • Yang XJ, Kang Z, Liu C (2010) Local fractional Fourier’s transform based on local fractional calculus. In: The 2010 ICECE 2010. IEEE Computer Society, pp 1242–1245

  • Yang XJ, Baleanu D, Zhong WP (2013a) Approximate solutions for diffusion equations on Cantor space-time. Proc Rom Acad Ser A 14:127–133

    MathSciNet  Google Scholar 

  • Yang XJ, Srivastava HM, He JH, Baleanu D (2013b) Cantor-type cylindrical-coordinate fractional derivatives. Proc Rom Acad Ser A 14:127–133

    Google Scholar 

  • Yang XJ, Baleanu D, Yang XJ (2013c) A local fractional variational iteration method for Laplace equation within local fractional operators. Abstr Appl Anal 2013:1–6 (article ID: 202650)

    MathSciNet  MATH  Google Scholar 

  • Yang AM, Zhang YZ, Cattani C, Xie GN, Rashidi MM, Zhou YJ, Yang XJ (2014a) Application of local fractional series expansion method to solve Klein–Gordon equations on Cantor sets. Abstr Appl Anal 2014:1–7

    MathSciNet  MATH  Google Scholar 

  • Yang XJ, Hristov J, Srivastava HM, Ahmad B (2014b) Modelling fractal waves on shallow water surfaces via local fractional Korteweg–de Vries equation. Abstr Appl Anal 2013:1–10 (article ID: 278672)

    MathSciNet  MATH  Google Scholar 

  • Yang AM, Li J, Srivastava HM, Xie GN, Yang XJ (2014c) Local fractional variational iteration method for solving linear partial differential equation with local fractional derivative. Discrete Dyn Nat Soc 2014:1–8 (article ID: 365981)

    MathSciNet  MATH  Google Scholar 

  • Yang XJ, Srivastava HM, Cattani C (2015a) Local fractional homotopy perturbation method for solving fractional partial differential equations arising in mathematical physics. Rom Rep Phys 67:752–761

    Google Scholar 

  • Yang XJ, Baleanu D, Srivastava HM (2015b) Local fractional integral transforms and their applications. Academic Press, New York

    MATH  Google Scholar 

  • Yang XJ, Tenreiro JAM, Baleanu D, Gao F (2016a) A new numerical technique for local fractional diffusion equation in fractal heat transfer. J Nonlinear Sci Appl 9:5621–5628

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ, Machado JT, Baleanu D, Cattani C (2016b) On exact traveling-wave solutions for local fractional Korteweg–de Vries equation. Chaos Interdiscip J Nonlinear Sci 26(8):084312

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ, Machado JA, Hristov J (2016c) Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dyn 84(1):3–7

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ, Machado JT, Cattani C, Gao F (2017a) On a fractal LC-electric circuit modeled by local fractional calculus. Commun Nonlinear Sci Numer Simul 47:200–206

    Article  Google Scholar 

  • Yang XJ, Machado JAT, Baleanu D (2017b) Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25(4):1740006, 1-7

    MathSciNet  Google Scholar 

  • Yang XJ, Gao F, Srivastava HM (2017c) Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Comput Math Appl 73(2):203–210

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ, Machado JA, Nieto JJ (2017d) A new family of the local fractional PDEs. Fundam Inform 151(1–4):63–75

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ, Gao F, Srivastava HM (2018) A new computational approach for solving nonlinear local fractional PDEs. J Comput Appli Math 339:285–296

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Cattani C, Yang XJ (2015) Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy 17:6753–6764

    Article  MathSciNet  Google Scholar 

  • Zhao D, Singh J, Kumar D, Rathore S, Yang XJ (2017) An efficient computational technique for local fractional heat conduction equation in fractal media. J Nonlinear Sci Appl 10:1478–1486

    Article  MathSciNet  MATH  Google Scholar 

  • Ziane D, Baleanu D, Belghaba K, Cherif M (2017) Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2017.05.002

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by China Scholarship Council (2017GXZ025381), National Natural Science Foundation of China (11571206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehu Maitama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitama, S., Zhao, W. Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets. Comp. Appl. Math. 38, 65 (2019). https://doi.org/10.1007/s40314-019-0825-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0825-5

Keywords

Mathematics Subject Classification

Navigation