Skip to main content
Log in

High-order compact methods for the nonlinear Dirac equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, a fourth-order in space and second-order in time compact scheme, a sixth-order in space and second-order in time compact scheme and two linearized compact schemes are proposed for the (1+1)-dimensional nonlinear Dirac equation. The iterative algorithm is used to compute the nonlinear algebraic system and the Thomas algorithm in the matrix form is adopted to enhance the computational efficiency. It is proved that all of the schemes are unconditionally stable in the linear sense. Numerical experiments are given to test the accuracy order of the presented schemes, record the error history for all of the schemes with respect to t, discuss the conservation laws of discrete charge and energy from the numerical point of view, study the stability of the solitary waves by adding a small random perturbation to the initial data, and simulate the collision of two and three solitary waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abanin DA, Morozov SV, Ponomarenko LA et al (2011) Giant nonlocality near the Dirac point in graphene. Science 332:328–330

    Article  Google Scholar 

  • Alvarez A (1992) Linearized Crank–Nicholson scheme for nonlinear Dirac equations. J Comput Phys 99:348–350

    Article  MathSciNet  Google Scholar 

  • Alvarez A, Carreras B (1981) Interaction dynamics for the solitary waves of a nonlinear Dirac model. Phys Lett A 86:327–332

    Article  MathSciNet  Google Scholar 

  • Alvarez A, Kuo PY, Vázquez L (1983) The numerical study of a nonlinear one-dimensional Dirac equation. Appl Math Comput 13:1–15

    MathSciNet  MATH  Google Scholar 

  • Anderson CD (1933) The positive electron. Phys Rev 43:491–498

    Article  Google Scholar 

  • Bao W, Cai Y (2015) Ground states and dynamics of spin-orbit-coupled Bose-Einstein condensates. SIAM J Appl Math 75:492–517

    Article  MathSciNet  Google Scholar 

  • Bao W, Li XG (2004) An efficient and stable numerical method for the Maxwell–Dirac system. J Comput Phys 199:663–687

    Article  MathSciNet  Google Scholar 

  • Bao WZ, Cai YY, Jia XW et al (2016) Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci China Math 59:1461–1494

    Article  MathSciNet  Google Scholar 

  • Bhatt HP, Khaliq AQM (2016) Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation. Comput Phys Commun 200:117–138

    Article  MathSciNet  Google Scholar 

  • Chu PC, Fan C (1998) A three-point combined compact difference scheme. J Comput Phys 140:370–399

    Article  MathSciNet  Google Scholar 

  • Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond A 117:610–624

    Article  Google Scholar 

  • Dirac PAM (1930) A theory of electrons and protons. Proc R Soc Lond A 126:360–365

    Article  Google Scholar 

  • Fillion-Gourdeau F, Herrmann HJ, Mendoza M et al (2013) Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. Phys Rev Lett 111(160):602

    Google Scholar 

  • Finkelstein R, Lelevier R, Ruderman M (1951) Nonlinear spinor fields. Phys Rev 83:326–332

    Article  Google Scholar 

  • Finkelstein R, Fronsdal C, Kaus P (1956) Nonlinear spinor field. Phys Rev 103:1571–1579

    Article  Google Scholar 

  • Frutos JD, Sanz-serna JM (1989) Split-step spectral schemes for nonlinear Dirac systems. J Comput Phys 83:407–423

    Article  MathSciNet  Google Scholar 

  • Haddad LH, Carr LD (2009) The nonlinear Dirac equation in Bose–Einstein condensates: foundation and symmetries. Phys D 238:1413–1421

    Article  MathSciNet  Google Scholar 

  • Haddad LH, Weaver CM, Carr LD (2015) The nonlinear Dirac equation in Bose–Einstein condensates, I: Relativistic solitons in armchair nanoribbon optical lattices. New J Phys 17(063):033

    MathSciNet  Google Scholar 

  • Heisenberg W (1957) Quantum theory of fields and elementary particles. Rev Mod Phys 29:269–278

    Article  MathSciNet  Google Scholar 

  • Hong J, Li C (2006) Multi-symplectic Runge–Kutta methods for nonlinear Dirac equations. J Comput Phys 211:448–472

    Article  MathSciNet  Google Scholar 

  • Hua DY, Li XG (2014) The finite element method for computing the ground states of the dipolar Bose–Einstein condensates. Appl Math Comput 234:214–222

    MathSciNet  MATH  Google Scholar 

  • Huang Z, Jin S, Markowich PA et al (2005) A time-splitting spectral scheme for the Maxwell–Dirac system. J Comput Phys 208:761–789

    Article  MathSciNet  Google Scholar 

  • Ivanenko DD (1938) Notes to the theory of interaction via pareicles. Zh Éksp Teor Fiz 8:260–266

    Google Scholar 

  • Kibble TWB (1961) Lorentz invariance and the gravitational field. J Math Phys 2:212–221

    Article  MathSciNet  Google Scholar 

  • Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42

    Article  MathSciNet  Google Scholar 

  • Li XG, Chan CK, Hou Y (2010) A numerical method with particle conservation for the Maxwell–Dirac system. Appl Math Comput 216:1096–1108

    MathSciNet  MATH  Google Scholar 

  • Li LZ, Sun HW, Tam SK (2015) A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations. Comput Phys Commun 187:38–48

    Article  MathSciNet  Google Scholar 

  • Li SC, Li XG, Cao JJ et al (2017) High-order numerical method for the derivative nonlinear Schrödinger equation. Int J Model Simul Sci Comput 8:1750017

    Article  Google Scholar 

  • Li SC, Li XG, Shi FY (2017) Time-splitting methods with charge conservation for the nonlinear Dirac equation. Numer Meth Part D E 33:1582–1602

    Article  MathSciNet  Google Scholar 

  • Li SC, Li XG, Shi FY (2018) Numerical methods for the derivative nonlinear Schrödinger equation. Int J Nonlin Sci Num 19:239–249

    Article  Google Scholar 

  • Lorin E, Bandrauk A (2011) A simple and accurate mixed P0-Q1 solver for the Maxwell–Dirac equations. Nonlinear Anal-Real 12:190–202

    Article  MathSciNet  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  Google Scholar 

  • Piazza AD, Mller C, Hatsagortsyan KZ et al (2012) Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys 84:1177–1228

    Article  Google Scholar 

  • Reinhardt J, Greiner W (1977) Quantum electrodynamics of strong fields. Rep Prog Phys 40:219–295

    Article  Google Scholar 

  • Saha B (2012) Nonlinear spinor fields and its role in cosmology. Int J Theor Phys 51:1812–1837

    Article  MathSciNet  Google Scholar 

  • Sciama DW (1964) The physical structure of general relativity. Rev Mod Phys 36:463–469

    Article  Google Scholar 

  • Shao S, Tang H (2005) Interaction for the solitary waves of a nonlinear Dirac model. Phys Lett A 345:119–128

    Article  MathSciNet  Google Scholar 

  • Shao S, Tang H (2006) Higher-order accurate Runge–Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete Cont Dyn Syst B 6:623–640

    Article  MathSciNet  Google Scholar 

  • Shao S, Tang H (2008) Interaction of solitary waves with a phase shift in a nonlinear Dirac model. Commun Comput Phys 3:950–967

    MathSciNet  MATH  Google Scholar 

  • Soler M (1970) Classical, stable, nonlinear spinor field with positive rest energy. Phys Rev D 1:2766–2769

    Article  Google Scholar 

  • Sun HW, Li LZ (2014) A CCD-ADI method for unsteady convection-diffusion equations. Comput Phys Commun 185:790–797

    Article  MathSciNet  Google Scholar 

  • Thaller B (1992) The Dirac equation. Springer, New York

    Book  Google Scholar 

  • Wang ZQ, Guo BY (2004) Modified Legendre rational spectral method for the whole line. J Comput Math 22:457–474

    MathSciNet  MATH  Google Scholar 

  • Wang H, Tang H (2007) An efficient adaptive mesh redistribution method for a non-linear Dirac equation. J Comput Phys 222:176–193

    Article  MathSciNet  Google Scholar 

  • Wang T, Guo B, Xu Q (2013) Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J Comput Phys 243:382–399

    Article  MathSciNet  Google Scholar 

  • Xu Y, Zhang L (2012) Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation. Comput Phys Commun 183:1082–1093

    Article  MathSciNet  Google Scholar 

  • Xu J, Shao S, Tang H (2013) Numerical methods for nonlinear Dirac equation. J Comput Phys 245:131–149

    Article  MathSciNet  Google Scholar 

  • Xu J, Shao S, Tang H et al (2015) Multi-hump solitary waves of a nonlinear Dirac equation. Commun Math Sci 13:1219–1242

    Article  MathSciNet  Google Scholar 

  • Zhang JJ, Li XG, Shao JF (2017) Compact implicit integration factor method for the nonlinear Dirac equation. Discrete Dyn Nat Soc 3634815

Download references

Acknowledgements

Shu-Cun Li was supported by Hunan Provincial Innovation Foundation For Postgraduate (Project no. CX2018B065). Xiang-Gui Li was supported by the National Natural Science Foundation of China (Project No. 11671044), the Science Challenge Project (Project no. TZ2016001) and Beijing Municipal Commission of Education (Project no. PXM2017_014224_000020). The first author would like to thank professor Dongying Hua for her useful discussions. The authors would like to thank the referees and the editors for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Gui Li.

Appendix: Sixth-order boundary conditions

Appendix: Sixth-order boundary conditions

Let

$$\begin{aligned} L = h \left( \alpha \left( \partial _{xx}{\varvec{u}}\right) _{0}^{n} + \beta \left( \partial _{xx}{\varvec{u}}\right) _{1}^{n} + \gamma \left( \partial _{xx}{\varvec{u}}\right) _{2}^{n} \right) + \lambda \left( \partial _{x}{\varvec{u}}\right) _{0}^{n} + \mu \left( \partial _{x}{\varvec{u}}\right) _{1}^{n} + \xi \left( \partial _{x}{\varvec{u}}\right) _{2}^{n} + \frac{a {\varvec{u}}_{0}^{n} + b {\varvec{u}}_{1}^{n} + c {\varvec{u}}_{2}^{n} }{h}, \end{aligned}$$
(26)

and substitute (6)–(8) to (26), we have

$$\begin{aligned} \begin{aligned} L&= \frac{a+b+c}{h}{\varvec{u}}_{1}^{n}+\left( \lambda +\mu +\xi +c-a\right) \left( \partial _{x}{\varvec{u}}\right) _{1}^{n} + \left( \alpha +\beta +\gamma +\xi -\lambda +\frac{c+a}{2}\right) h\left( \partial _{xx}{\varvec{u}}\right) _{1}^{n} \\&\quad + \left( \gamma -\alpha +\frac{\xi +\lambda }{2!}+\frac{c-a}{3!}\right) h^{2}\left( \partial _{3x}{\varvec{u}}\right) _{1}^{n} + \left( \frac{\gamma +\alpha }{2!}+\frac{\xi -\lambda }{3!}+\frac{c+a}{4!} \right) h^{3}\left( \partial _{4x}{\varvec{u}}\right) _{1}^{n} \\&\quad + \left( \frac{\gamma -\alpha }{3!}+\frac{\xi +\lambda }{4!}+\frac{c-a}{5!} \right) h^{4}\left( \partial _{5x}{\varvec{u}}\right) _{1}^{n} + \left( \frac{\gamma +\alpha }{4!}+\frac{\xi -\lambda }{5!}+\frac{c+a}{6!} \right) h^{5}\left( \partial _{6x}{\varvec{u}}\right) _{1}^{n} \\&\quad + \left( \frac{\gamma -\alpha }{5!}+\frac{\xi +\lambda }{6!}+\frac{c-a}{7!} \right) h^{6}\left( \partial _{7x}{\varvec{u}}\right) _{1}^{n} + \cdots , \end{aligned} \end{aligned}$$

The last part of the above equation can be replaced by \(O\left( h ^{6}\right) \), then let the coefficients be equal to zero, one gets some pairs of sixth-order boundary conditions. Obviously, there are more than four solutions, here we give only four solutions, i.e.,

$$\begin{aligned} \left\{ \begin{array}{l} a = -39, b = 48, c = -9, \alpha = -2, \beta = 8, \gamma = 0, \lambda = -16, \mu = -16, \xi = 2, \\ a = -303, b = 336, c = -33, \alpha = -16, \beta = 56, \gamma = 2, \lambda = -126, \mu = -144, \xi = 0,\\ a = -\frac{645}{2}, b = 360, c = -\frac{75}{2}, \alpha = -17, \beta = 60, \gamma = 2, \lambda = -134, \mu = -152, \xi = 1,\\ a = -\frac{381}{2}, b = 216, c = -\frac{51}{2}, \alpha = -10, \beta = 36, \gamma = 1, \lambda = -79, \mu = -88, \xi = 2. \end{array} \right. \end{aligned}$$

In addition, there are two fifth-order one-side boundary conditions (Li et al. 2015)

$$\begin{aligned} \left\{ \begin{array}{l} 2h\left( \partial _{xx}{\varvec{u}}\right) _{0}^{n}-4h\left( \partial _{xx}{\varvec{u}}\right) _{1}^{n}+14\left( \partial _{x}{\varvec{u}}\right) _{0}^{n}+16\left( \partial _{x}{\varvec{u}}\right) _{1}^{n}+\frac{31{\varvec{u}}_{0}^{n}-32{\varvec{u}}_{1}^{n}+{\varvec{u}}_{2}^{n}}{h}=\mathbf {0},\\ -2h\left( \partial _{xx}{\varvec{u}}\right) _{J}^{n}+4h\left( \partial _{xx}{\varvec{u}}\right) _{J-1}^{n}+14\left( \partial _{x}{\varvec{u}}\right) _{J}^{n}+16\left( \partial _{x}{\varvec{u}}\right) _{J-1}^{n}-\frac{31{\varvec{u}}_{J}^{n}-32{\varvec{u}}_{J-1}^{n}+{\varvec{u}}_{J-2}^{n}}{h}=\mathbf {0}, \end{array} \right. \end{aligned}$$

and four fourth-order one-side boundary conditions (Chu and Fan 1998)

$$\begin{aligned} \left\{ \begin{array}{l} 2h\left( \partial _{xx}{\varvec{u}}\right) _{0}^{n}-2\left( \partial _{x}{\varvec{u}}\right) _{0}^{n}-4\left( \partial _{x}{\varvec{u}}\right) _{1}^{n}-\frac{ 7{\varvec{u}}_{0}^{n}-8{\varvec{u}}_{1}^{n}+7{\varvec{u}}_{2}^{n}}{h}=\mathbf {0},\\ 2h\left( \partial _{xx}{\varvec{u}}\right) _{J-1}^{n}+2\left( \partial _{x}{\varvec{u}}\right) _{J}^{n}+4\left( \partial _{x}{\varvec{u}}\right) _{J-1}^{n}-\frac{ 7{\varvec{u}}_{0}^{n}-8{\varvec{u}}_{1}^{n}+7{\varvec{u}}_{2}^{n}}{h}=\mathbf {0}, \\ h\left( \partial _{xx}{\varvec{u}}\right) _{0}^{n}+5h\left( \partial _{xx}{\varvec{u}}\right) _{1}^{n}-6\left( \partial _{x}{\varvec{u}}\right) _{1}^{n}-\frac{ 9{\varvec{u}}_{0}^{n}-12{\varvec{u}}_{1}^{n}+9{\varvec{u}}_{2}^{n}}{h}=\mathbf {0},\\ h\left( \partial _{xx}{\varvec{u}}\right) _{J}^{n}+5h\left( \partial _{xx}{\varvec{u}}\right) _{J-1}^{n}+6\left( \partial _{x}{\varvec{u}}\right) _{J-1}^{n}-\frac{ 9{\varvec{u}}_{J}^{n}-12{\varvec{u}}_{J-1}^{n}+9{\varvec{u}}_{J-2}^{n}}{h}=\mathbf {0}. \end{array} \right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SC., Li, XG. High-order compact methods for the nonlinear Dirac equation. Comp. Appl. Math. 37, 6483–6498 (2018). https://doi.org/10.1007/s40314-018-0705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0705-4

Keywords

Mathematics Subject Classification

Navigation