Skip to main content
Log in

High-order compact difference schemes based on the local one-dimensional method for high-dimensional nonlinear wave equations

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, two compact difference schemes are established for solving two-dimensional (2D) and three-dimensional (3D) nonlinear wave equations with variable coefficients, respectively, by using the local one-dimensional (LOD) method and the fourth-order compact difference approximation formulas of the second-order derivatives. Firstly, a four-step fourth-order compact scheme is derived to solve the 2D nonlinear wave equation. The stability of the scheme 2for solving the linear equation is analyzed by the discrete Fourier method, which shows that it is conditionally stable. Then, the method is extend to solve the 3D nonlinear wave equation and stability condition for the linear equation is also analyzed. Finally, numerical experiments are conducted to verify the accuracy and stability of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support this study are available from the corresponding author on reasonable request.

References

  1. Robertsson, J., Blanch, J., Nihei, K., Tromp, J.: Numerical modeling of seismic wave propagation. Society of Exploration Geophysicists (2012)

  2. Moczo, P., Kristek, J., Galis, M.: The finite-difference modelling of earthquake motions: Waves and ruptures. Cambridge University Press. Geological Magazine (2014)

  3. Li, L., Tan, J., Zhang, D., et al.: FD wave 3D: a MATLAB solver for the 3D anisotropic wave equation using the finite-difference method. Comput. Geosci. 25, 1565–1578 (2021)

    Article  Google Scholar 

  4. Wang, Z., Li, J., Wang, B., Xu, Y., Chen, X.: A new central compact finite difference scheme with high spectral resolution for acoustic wave equation. J. Comput. Phys. 366, 191–206 (2018)

    Article  Google Scholar 

  5. Abdulkadir, Y.: Comparison of finite difference schemes for the wave equation based on dispersion. J. Appl. Math. Phys. 3, 1544–1562 (2015)

    Article  Google Scholar 

  6. Liao, W., Yong, P., Dastour, H., Huang, J.: Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media. Appl. Math. Comput. 321, 385–400 (2018)

    Google Scholar 

  7. Liao, W.: On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation. J. Comput. Appl. Math. 270, 571–583 (2014)

    Article  Google Scholar 

  8. Fairweather, B., Kastner, R.: Finite difference time domain dispersion reduction schemes. J. Comput. Phys. 221, 422–438 (2007)

    Article  Google Scholar 

  9. Yang, D., Wang, L.: A split-step algorithm with effectively suppressing the numerical dispersion for 3D seismic propagation modeling. Bull. Seismol. Soc. Am. 100, 1470–1484 (2010)

    Article  Google Scholar 

  10. Yang, D., Tong, P., Deng, X.: A central difference method with low numerical dispersion for solving the scalar wave equation. Geophys. Prospect. 60, 885–905 (2012)

    Article  Google Scholar 

  11. Liu, Y., Sen, M.: A new time space domain high-order finite-difference method for the acoustic wave equation. J. Comput. Phys. 228, 8779–8806 (2009)

    Article  Google Scholar 

  12. Feo, F., Jordan, J., Rojas, O., Otero, B., Rodriguez, R.: A new mimetic scheme for the acoustic wave equation. J. Comput. Appl. Math. 295, 2–12 (2016)

    Article  Google Scholar 

  13. Jiwari, R., Pandit, S., Mittal, R.: Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183, 600–616 (2012)

    Article  Google Scholar 

  14. Torberntsson, K., Stiernström, V., Mattsson, K., Dunham, E.: A finite difference method for earthquake sequences in poroelastic solids. Comput. Geosci. 22, 1351-1370 (2018)

  15. Sheen, D., Tuncay, K., Baag, C., Ortoleva, P.: Parallel implementation of a velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation. Comput. Geosci. 32, 1182–1191 (2006)

    Article  Google Scholar 

  16. Li, D., Sun, W.: Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations. J. Sci. Comput. 83, 65 (2020)

    Article  Google Scholar 

  17. Bratsos, A.: A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation. Numerical Algorithms 43, 295–308 (2006)

    Article  Google Scholar 

  18. Liu, C., Wu, X.: Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations. J. Comput. Phys. 340, 243–275 (2017)

    Article  Google Scholar 

  19. Su, L.: Numerical solution of two-dimensional nonlinear sine-Gordon equation using localized method of approximate particular solutions. Eng. Anal. Boundary Elem. 108, 95–107 (2019)

    Article  Google Scholar 

  20. Hou, B., Liang, D.: The energy-preserving time high-order AVF compact finite difference scheme for nonlinear wave equations in two dimensions. Appl. Numer. Math. 170, 298–320 (2021)

    Article  Google Scholar 

  21. Cui, M.: High order compact alternating direction implicit method for the generalized sine-Gordon equation. J. Comput. Appl. Math. 235, 837–849 (2010)

    Article  Google Scholar 

  22. Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)

    Google Scholar 

  23. Deng, D.: Unified compact ADI methods for solving nonlinear viscous and nonviscous wave equations. Chin. J. Phys. 56, 2897–2915 (2018)

    Article  Google Scholar 

  24. Deng, D., Zhang, C.: A new fourth-order numerical algorithm for a class of nonlinear wave equations. Appl. Numer. Math. 62, 1864–1879 (2012)

    Article  Google Scholar 

  25. Peaceman, D., Rachford, H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  Google Scholar 

  26. Deng, D., Zhang, C.: A family of new fourth-order solvers for a nonlinear damped wave equation. Comput. Phys. Commun. 184, 86–101 (2013)

    Article  Google Scholar 

  27. Li, K., Liao, W., Lin, Y.: A compact high-order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient. J. Comput. Appl. Math. 361, 113–129 (2019)

  28. Zhang, W., Tong, L., Chung, E.: A new high accuracy locally one-dimensional scheme for the wave equation. J. Comput. Appl. Math. 236, 1343–4353 (2011)

    Article  Google Scholar 

  29. Zhang, W., Jiang, J.: A new family of fourth-order locally one-dimensional scheme for the three-dimensional wave equation. J. Comput. Appl. Math. 322, 130–147 (2017)

    Article  Google Scholar 

  30. Yun, N., Sun, C., Sim, C.: An optimal nearly analytic splitting method for solving 2D acoustic wave equations. J. Appl. Geophys. 177, 104029 (2020)

    Article  Google Scholar 

  31. Sim, C., Sun, C., Yun, N.: A nearly analytic symplectic partitioned Runge-Kutta method based on a locally one-dimensional technique for solving two-dimensional acoustic wave equations. Geophys. Prospect. 68, 1253–1269 (2020)

    Article  Google Scholar 

  32. Zhang, W.: A new family of fourth-order locally one-dimensional schemes for the 3D elastic wave equation. J. Comput. Appl. Math. 348, 246–260 (2018)

    Article  Google Scholar 

  33. Dehghan, M., Shokri, A.: A numerical method for the one-dimensional nonlinear sine-Gordon equation using collocation and radial basis functions. Numerical Methods for Partial Differential Equations 24, 687–698 (2008)

    Article  Google Scholar 

  34. Hirsh, R.: Higher order accurate difference solutions of fluid mechanics problem by a compact differencing technique. J. Comput. Phys. 19, 90–109 (1975)

    Article  Google Scholar 

  35. Samarskii, A.: Local one-dimensional difference schemes for multi-dimensional hyperbolic equations in an arbitrary region. USSR Comput. Math. Math. Phys. 4, 21–35 (1964)

    Article  Google Scholar 

  36. Yang, D.: Iterative Solution for Large Linear System. Academic Press, New York (1991)

    Google Scholar 

  37. Hoop, A.: A modification of Cagniards method for solving seismic pulse problems. Appl. Sci. Res. 8, 349–356 (1960)

    Article  Google Scholar 

  38. Zhang, G.: Two conservative and linearly-implicit compact difference schemes for the nonlinear fourth-order wave equation. Appl. Math. Comput. 401, 126055 (2021)

    Google Scholar 

  39. Deng, D., Wu, Q.: Error estimations of the fourth-order explicit Richardson extrapolation method for two-dimensional nonlinear coupled wave equations. Comput. Appl. Math. 41, 3 (2022)

  40. Hashemi, M.: Numeical study of the one-dimensional coupled nonlinear sine-Gordon equations by a novel geometric meshless method. Engineering with Computers 37, 3397–3407 (2021)

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (12161067, 12001015, 12261067), National Natural Science Foundation of Ningxia (2022AAC02023), National Youth Top-notch Talent Support Program of Ningxia, and the First Class Discipline Construction Project in Ningxia Universities: Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Ge.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Lemma 1

[36] The sufficient and necessary condition for the roots of the quadratic equation \({\delta ^2} - {b_1}\delta - {c_1} = 0\) with real coefficients to be less than or equal to 1 is \(|{{c_1}} |\le 1,|{{b_1}} |\le 1-c_1\).

Theorem 2

The scheme is stable if

$$\begin{aligned} \mathop {\max }\limits _{1 \le i,j,k \le N} |{\frac{{v_{i,j,k} \cdot \tau }}{h}}|= v_{\max } \lambda \le 0.7385, \end{aligned}$$

in which, \({v_{\max }} = \mathop {\max }\limits _{1 \le i,j,k \le N} |{{v_{i,j,k}}} |\).

Proof

Letting \(u_{i,j,k}^n = {\eta ^n}{e^{I{\sigma _1}{x_i}}}{e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}\), \(u_{i,j,k}^{n + \frac{1}{3}} = {\eta ^{n + \frac{1}{3}}}{e^{I{\sigma _1}{x_i}}}{e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}\), \(u_{i,j,k}^{n - \frac{1}{3}} = {\eta ^{n - \frac{1}{3}}}{e^{I{\sigma _1}{x_i}}}{e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}\), \(\mathop {\max }\limits _{1 \le i,j,k \le N} v_{i,j,k}^2 = a\), and multiplying by a on the both sides of Eq. (45), we have

$$\begin{aligned}{} & {} \left( {\frac{5}{6} + \frac{{{a}{\lambda ^2}}}{{18}}} \right) {\eta ^{n + \frac{1}{3}}}{e^{I{\sigma _1}{x_i}}}{e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}\nonumber \\{} & {} + \left( {\frac{1}{{12}} - \frac{{{a}{\lambda ^2}}}{{36}}} \right) {\eta ^{n + \frac{1}{3}}}\left( {{e^{I{\sigma _1}{x_{i + 1}}}} + {e^{I{\sigma _1}{x_{i - 1}}}}} \right) {e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}} \nonumber \\= & {} \left( {\frac{5}{3} - \frac{{5{a}{\lambda ^2}}}{9}} \right) {\eta ^n}{e^{I{\sigma _1}{x_i}}}{e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}\nonumber \\{} & {} + \left( {\frac{1}{6} + \frac{{5{a}{\lambda ^2}}}{{18}}} \right) {\eta ^n}\left( {{e^{I{\sigma _1}{x_{i + 1}}}} + {e^{I{\sigma _1}{x_{i - 1}}}}} \right) {e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}\nonumber \\{} & {} - \left( {\frac{5}{6} + \frac{{{a}{\lambda ^2}}}{{18}}} \right) {\eta ^{n - \frac{1}{3}}}{e^{I{\sigma _1}{x_i}}}{e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}\nonumber \\{} & {} \!-\! \left( {\frac{1}{{12}} \!-\! \frac{{{a}{\lambda ^2}}}{{36}}} \right) {\eta ^{n - \frac{1}{3}}}\left( {{e^{I{\sigma _1}{x_{i + 1}}}} + {e^{I{\sigma _1}{x_{i - 1}}}}} \right) {e^{I{\sigma _2}{y_j}}}{e^{I{\sigma _3}{z_k}}}.\nonumber \\ \end{aligned}$$
(A-1)

By \({e^{ \pm I\sigma h}} = \cos \sigma h \pm I\sin \sigma h\), we get

$$\begin{aligned}{} & {} \left( {\frac{5}{6} + \frac{{a{\lambda ^2}}}{{18}}} \right) {\eta ^{n + \frac{1}{3}}} + 2\cos {\sigma _1}h\left( {\frac{1}{{12}} - \frac{{a{\lambda ^2}}}{{36}}} \right) {\eta ^{n + \frac{1}{3}}}\nonumber \\= & {} \left( {\frac{5}{3} - \frac{{5a{\lambda ^2}}}{9}} \right) {\eta ^n} + 2\cos {\sigma _1}h\left( {\frac{1}{6} + \frac{{5a{\lambda ^2}}}{{18}}} \right) {\eta ^n}\nonumber \\{} & {} - \left( {\frac{5}{6} + \frac{{a{\lambda ^2}}}{{18}}} \right) {\eta ^{n - \frac{1}{3}}} - 2\cos {\sigma _1}h\left( {\frac{1}{{12}} - \frac{{a{\lambda ^2}}}{{36}}} \right) {\eta ^{n - \frac{1}{3}}}.\nonumber \\ \end{aligned}$$
(A-2)

Letting \({\varepsilon ^{n + \frac{1}{3}}} = {\eta ^n},\,\,{\varepsilon ^n} = {\eta ^{n - \frac{1}{3}}}\), Eq. (A-2) is written in matrix form

$$\begin{aligned} \begin{array}{l} \left[ {\begin{array}{*{20}{c}} {\frac{5}{6}\! \!+ \!\!\frac{{a{\lambda ^2}}}{{18}}\!\! +\!\! \left( {\frac{1}{6} \!-\! \frac{{a{\lambda ^2}}}{{18}}} \right) \cos {\sigma _1}h}&{}\,\,\,\,\,\,0\\ 0&{}\,\,\,\,\,\,1 \end{array}} \right] \left[ \begin{array}{l} {\eta ^{n + \frac{1}{3}}}\\ {\varepsilon ^{n + \frac{1}{3}}} \end{array} \right] \\ = \left[ \! {\begin{array}{*{20}{c}} {\frac{5}{3} \!\!- \!\!\frac{{5a{\lambda ^2}}}{9} \!\!+\!\! \left( {\frac{1}{3} \!\!+ \!\!\frac{{5a{\lambda ^2}}}{9}} \right) \cos {\sigma _1}h}&{}{ \,\,\,\,\,\,-\! \left( {\frac{5}{6} \!\!+\! \!\frac{{a{\lambda ^2}}}{{18}}} \right) \!\!-\! \!\left( {\frac{1}{6}\!\! -\!\! \frac{{a{\lambda ^2}}}{{18}}} \right) \cos {\sigma _1}h}\\ 1&{}\,\,\,\,\,\,0 \end{array}} \!\right] \left[ \begin{array}{l} {\eta ^n}\\ {\varepsilon ^n} \end{array} \right] . \end{array} \end{aligned}$$
(A-3)

Letting \({U^n} = {\left( {{\eta ^n},{\varepsilon ^n}} \right) ^T}\) and substituting it into Eq. (A-3) to get

$$\begin{aligned} \begin{array}{l} \left[ {\begin{array}{*{20}{c}} {\frac{5}{6}\!\! +\!\! \frac{{a{\lambda ^2}}}{{18}} \!\!+\!\! \left( {\frac{1}{6} \!\!- \!\!\frac{{a{\lambda ^2}}}{{18}}} \right) \cos {\sigma _1}h}&{}\,\,\,\,\,\,0\\ 0&{}\,\,\,\,\,\,1 \end{array}} \right] {U^{n + \frac{1}{3}}}\\ = \left[ \!{\begin{array}{*{20}{c}} {\frac{5}{3} \!\!-\!\! \frac{{5a{\lambda ^2}}}{9}\! \!+ \!\!\left( {\frac{1}{3}\!\! +\!\! \frac{{5a{\lambda ^2}}}{9}} \right) \cos {\sigma _1}h}&{}{ \,\,\,\,\,\,- \!\left( {\frac{5}{6} \!\!+\! \!\frac{{a{\lambda ^2}}}{{18}}} \right) \! \!- \!\!\left( {\frac{1}{6}\!\! -\! \!\frac{{a{\lambda ^2}}}{{18}}} \right) \cos {\sigma _1}h}\\ 1&{}\,\,\,\,\,\,0 \end{array}}\! \right] {U^n}. \end{array} \end{aligned}$$
(A-4)

Similarly, Eqs. (46) and (47) can be treated as

$$\begin{aligned} \begin{array}{l} \left[ {\begin{array}{*{20}{c}} {\frac{5}{6} \!+ \!\frac{{a{\lambda ^2}}}{{18}} \!+\! \left( {\frac{1}{6}\! - \!\frac{{a{\lambda ^2}}}{{18}}} \right) \cos {\sigma _2}h}&{}\,\,\,\,\,\,0\\ 0&{}\,\,\,\,\,\,1 \end{array}} \right] {U^{n + \frac{2}{3}}}\\ = \left[ \!{\begin{array}{*{20}{c}} {\frac{5}{3} \!\!-\!\! \frac{{5a{\lambda ^2}}}{9}\!\! +\!\! \left( {\frac{1}{3} \!\!+\!\! \frac{{5a{\lambda ^2}}}{9}} \right) \cos {\sigma _2}h}&{}{ \,\,\,\,\,\,-\! \left( {\frac{5}{6} \!\!+ \!\!\frac{{a{\lambda ^2}}}{{18}}} \right) \!\! - \!\!\left( {\frac{1}{6} \!\!-\!\! \frac{{a{\lambda ^2}}}{{18}}} \!\right) \cos {\sigma _2}h}\\ 1&{}\,\,\,\,\,\,0 \end{array}}\! \right] {U^{n + \frac{1}{3}}}, \end{array} \end{aligned}$$
(A-5)

and

$$\begin{aligned} \begin{array}{l} \left[ {\begin{array}{*{20}{c}} {\frac{5}{6}\!\! +\!\! \frac{{a{\lambda ^2}}}{{18}} \!\!+\!\! \left( {\frac{1}{6} \!\!-\!\! \frac{{a{\lambda ^2}}}{{18}}} \right) \cos {\sigma _3}h}&{}\,\,\,\,\,\,0\\ 0&{}\,\,\,\,\,\,1 \end{array}} \right] {U^{n + 1}}\\ = \left[ \!{\begin{array}{*{20}{c}} {\frac{5}{3}\! \!-\! \!\frac{{5a{\lambda ^2}}}{9}\!\!+ \!\!\left( \!{\frac{1}{3} \!\!+\! \!\frac{{5a{\lambda ^2}}}{9}} \!\right) \cos {\sigma _3}h}&{}{\,\,\,\,\,\,-\! \!\left( \! {\frac{5}{6}\! \!+ \!\!\frac{{a{\lambda ^2}}}{{18}}} \!\right) \! \!-\! \!\left( \! {\frac{1}{6} \!\!- \!\!\frac{{a{\lambda ^2}}}{{18}}} \!\right) \cos {\sigma _3}h}\\ 1&{}\,\,\,\,\,\,0 \end{array}} \!\right] {U^{n + \frac{2}{3}}}. \end{array} \end{aligned}$$
(A-6)

Substituting Eqs. (A-4)-(A-5) into Eq. (A-6), the error propagation matrix is

$$\begin{aligned} G =\left[ {\begin{array}{*{20}{c}} { -\! \frac{{{B_x}}}{{{A_x}}} \!- \!\frac{{{B_z}}}{{{A_z}}} \!+\! \frac{{{B_x}{B_y}{B_z}}}{{{A_x}{A_y}{A_z}}}}&{}\,\,\,\,\,\,{1 \!- \!\frac{{{B_y}{B_z}}}{{{A_y}{A_z}}}}\\ {\frac{{{B_x}{B_y}}}{{{A_x}{A_y}}} \!- \!1}&{}\,\,\,\,\,\,{ -\! \frac{{{B_y}}}{{{A_y}}}} \end{array}} \right] , \end{aligned}$$

in which,

$$\begin{aligned} {A_x}= & {} \frac{5}{6} + \frac{{{a}{\lambda ^2}}}{{18}} + \left( {\frac{1}{6} - \frac{{{a}{\lambda ^2}}}{{18}}} \right) \cos {\sigma _1}h,\\ {A_y}= & {} {\frac{5}{6} + \frac{{{a^2}{\lambda ^2}}}{{18}} + \left( {\frac{1}{6} - \frac{{a{\lambda ^2}}}{{18}}} \right) \cos {\sigma _2}h},\\ {A_z}= & {} {\frac{5}{6} + \frac{{{a}{\lambda ^2}}}{{18}} + \left( {\frac{1}{6} - \frac{{{a}{\lambda ^2}}}{{18}}} \right) \cos {\sigma _3}h},\\ {B_x}= & {} \frac{5}{3} - \frac{{5{a}{\lambda ^2}}}{9} + \left( {\frac{1}{3} + \frac{{5{a}{\lambda ^2}}}{9}} \right) \cos {\sigma _1}h,\\ {B_y}= & {} {\frac{5}{3} - \frac{{5{a}{\lambda ^2}}}{9} + \left( {\frac{1}{3} + \frac{{5{a}{\lambda ^2}}}{9}} \right) \cos {\sigma _2}h},\\ {B_z}= & {} {\frac{5}{3} - \frac{{5{a}{\lambda ^2}}}{9} + \left( {\frac{1}{3} + \frac{{5{a}{\lambda ^2}}}{9}} \right) \cos {\sigma _3}h}. \end{aligned}$$

The characteristic equation can be obtained by

$$\begin{aligned} |{\mu I \!-\! G} |\! = \!{\mu ^2} \!+\! \left( {\frac{{{B_x}}}{{{A_x}}} \!+\! \frac{{{B_y}}}{{{A_y}}} \!+ \frac{{{B_z}}}{{{A_z}}} \!- \frac{{{B_x}{B_y}{B_z}}}{{{A_x}{A_y}{A_z}}}} \right) \mu + 1=0. \end{aligned}$$

According to the Lemma 1, when \(|b_1 |= |\frac{{{B_x}{B_y}{B_z}}}{{{A_x}{A_y}{A_z}}}\) \( - \left( {\frac{{{B_x}}}{{{A_x}}} + \frac{{{B_y}}}{{{A_y}}} + \frac{{{B_z}}}{{{A_z}}}} \right) |\le 2\), the scheme is stable.

Because \(\frac{{{B_x}}}{{{A_x}}}\), \(\frac{{{B_y}}}{{{A_y}}}\) and \(\frac{{{B_z}}}{{{A_z}}}\) have the same range of values, thus, either \( - 2 \le \frac{{{B_x}}}{{{A_x}}},\frac{{{B_y}}}{{{A_y}}},\frac{{{B_z}}}{{{A_z}}} \le - 1\) or \( - 1 \le \frac{{{B_x}}}{{{A_x}}},\frac{{{B_y}}}{{{A_y}}},\frac{{{B_z}}}{{{A_z}}} \le 1\) or \( 1 \le \frac{{{B_x}}}{{{A_x}}},\frac{{{B_y}}}{{{A_y}}},\frac{{{B_z}}}{{{A_z}}}\le 2\), the scheme is stable. Here, we only analyze the value range of \(\frac{{{B_x}}}{{{A_x}}}\).

Letting \(\cos {\sigma _1}h = \theta ,\theta \in \left[ { - 1,1} \right] \), we assume that

$$\begin{aligned} G(\theta ) = \frac{{{B_x}}}{{{A_x}}} = \frac{{\frac{1}{3}\left( {5 + \theta } \right) + \frac{{5{a}{\lambda ^2}}}{9}\left( {\theta - 1} \right) }}{{\frac{1}{6}\left( {5 + \theta } \right) + \frac{{{a}{\lambda ^2}}}{{18}}\left( {1 - \theta } \right) }}, \end{aligned}$$

\(G\left( \theta \right) \) is an increasing function, the value range of the function \(G\left( \theta \right) \) is \(\left[ {\frac{{12 - 10{a}{\lambda ^2}}}{{6 + {a}{\lambda ^2}}},2} \right] \). Due to either \(- 2 \le G\left( \theta \right) \le - 1\) or \(- 1 \le G\left( \theta \right) \le 1\) or \(1 \le G\left( \theta \right) \le 2\), the scheme is stable. So, when \(1 \le \frac{{12 - 10{a}{\lambda ^2}}}{{6 + {a}{\lambda ^2}}} \le 2\), i.e., \(a{\lambda ^2} \le \frac{6}{{11}}\), the scheme is stable.

In summary, when \(a{\lambda ^2} \le \frac{6}{{11}}\), i.e., \({v_{\max }}\lambda = \sqrt{a} \lambda \le 0.7385\), the scheme is stable.\(\square \)

Appendix B

Table 10 The \({\Vert {{e_h}} \Vert _\infty }\) for various \(\tau \) at \(h = \pi /200\) at \(T = 1\) for Problem 1
Table 11 The \({\Vert {{e_h}} \Vert _\infty }\) for various T and \(\tau \) with \(h = \pi /200\) by the HOC-LOD scheme for Problem 1
Table 12 The \({\Vert {{e_h}} \Vert _\infty }\) for different T and \(\tau \) at \(h = \pi /80\) by the HOC-LOD scheme for Problem 4
Table 13 The \({\Vert {{e_h}}\Vert _\infty }\) and \({\Vert {{e_h}} \Vert _2}\) when \(T=0.1,\tau =0.001\) with various h by the HOC-LOD scheme for Problem 5
Table 14 The \({\Vert {{e_h}}\Vert _\infty }\) and \({\Vert {{e_h}} \Vert _2}\) when \(T=1,h=2\tau \) with various \(\tau \) by the HOC-LOD scheme for Problem 5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wang, Z. & Ge, Y. High-order compact difference schemes based on the local one-dimensional method for high-dimensional nonlinear wave equations. Comput Geosci 27, 687–705 (2023). https://doi.org/10.1007/s10596-023-10226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10226-1

Keywords

Navigation