Skip to main content
Log in

Effects of Dufour and fractional derivative on unsteady natural convection flow over an infinite vertical plate with constant heat and mass fluxes

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we analyze the effects of Dufour number and fractional-order derivative on unsteady natural convection flow of a viscous and incompressible fluid over an infinite vertical plate with constant heat and mass fluxes. The fractional constitutive model is obtained using fractional calculus approach. The Caputo fractional derivative operator is used in this problem. The dimensionless system of equations has been solved by employing Laplace transformation technique. Closed form solutions for concentration, temperature and velocity are presented in the form of Wright function and complementary error function. Effects of fractional and physical parameters on temperature and velocity profiles are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

u :

Velocity of the fluid

T :

Temperature of the fluid

C :

Concentration of the fluid

T :

Temperature of the fluid far away from the plate

C :

Species concentration of the fluid far away from the plate

g :

Acceleration due to gravity

C p :

Specific heat at a constant pressure

C S :

The concentration susceptibility

Gr :

Thermal Grashof number

Gm :

Mass Grashof number

k :

Thermal conductivity of the fluid

k T :

Thermal diffusion ratio

D :

Mass diffusivity

q w :

Heat flux per unit area at the plate

j :

Mass flux per unit area at the plate

L :

Characteristic length \( \left( { = (\nu^{2} /g)^{{\frac{1}{3}}} } \right) \)

β T :

The volumetric coefficient of thermal expansion

β C :

The volumetric coefficient of concentration expansion

Pr:

Prandtl number, (= μCp/k)

D f :

Dufour number

Sc :

Schmidt number

N :

Buoyancy ratio parameter

μ :

Dynamic viscosity

ρ :

Fluid density

ν :

Kinematic viscosity of the fluid \( \left( { = \frac{\mu }{\rho }} \right) \)

References

  • Alaimo G, Zingales M (2015) Laminar flow through fractal porous materials: the fractional-order transport equation. Commun Nonlinear Sci Numer Simul 22:889–902

    Article  MathSciNet  MATH  Google Scholar 

  • Ali Shah N, Vieru D, Fetecau C (2016) Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. J Magn Magn Mater 409:10–19

    Article  Google Scholar 

  • Bejan A, Lage JL (1990) The Prandtl number effect on the transition in natural convection along a vertical surface. J Heat Transf 112:787–790

    Article  Google Scholar 

  • Bhavnani SH, Bergles AE (1990) Effect of surface geometry and orientation on laminar natural convection heat transfer from a vertical flat plate with transverse roughness elements. Int J Heat Mass Transf 33:965–981

    Article  Google Scholar 

  • Bongiorno D (2009) On the problem of regularity in the Sobolev space Wloc1, n. Topol Appl 156:2986–2995

    Article  MATH  Google Scholar 

  • Bongiorno D (2014) Metric differentiability of Lipschitz maps. J Aust Math Soc 96:25–35

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee A (2005) Statistical origins of fractional derivatives in viscoelasticity. J Sound Vib 284:1239–1245

    Article  Google Scholar 

  • Cheesewright R (1968) Turbulent natural convection from a vertical plane surface. J Heat Transf 90:1–6

    Article  Google Scholar 

  • Chen TS, Tien HC, Armaly BF (1986) Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux. Int J Heat Mass Transf 29:1465–1478

    Article  MATH  Google Scholar 

  • Das UN, Deka R, Soundalgekar VM (1994) Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction. Forsch Ingenieurwes 60:284–287

    Article  Google Scholar 

  • Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442

    Article  MathSciNet  MATH  Google Scholar 

  • Deseri L, Zingales M (2015) A mechanical picture of fractional-order Darcy equation. Commun Nonlinear Sci Numer Simul 20:940–949

    Article  MathSciNet  MATH  Google Scholar 

  • Deseri L, Paola MD, Zingales M, Pollaci P (2013) Power-law hereditariness of hierarchical fractal bones. Int J Numer Methods Biomed Eng 29:1338–1360

    Article  MathSciNet  Google Scholar 

  • Fujii T, Imura H (1972) Natural-convection heat transfer from a plate with arbitrary inclination. Int J Heat Mass Transf 15:755–767

    Article  Google Scholar 

  • Gebhart B, Pera L (1971) The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion. Int J Heat Mass Transf 14:2025–2050

    Article  MATH  Google Scholar 

  • Hartley TT, Lorenzo CF (2002) Dynamics and control of initialized fractional-order systems. Nonlinear Dyn 29:201–233

    Article  MathSciNet  MATH  Google Scholar 

  • Havet M, Blay D (1999) Natural convection over a non-isothermal vertical plate. Int J Heat Mass Transf 42:3103–3112

    Article  MATH  Google Scholar 

  • Kawada Y, Nagahama H, Hara H (2006) Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks. Tectonophysics 427:255–263

    Article  Google Scholar 

  • Khan I, Ali Shah N, Mahsud Y, Vieru D (2017a) Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo-Fabrizio derivatives. Eur Phys J Plus 132:194

    Article  Google Scholar 

  • Khan I, Shah NA, Dennis LCC (2017b) A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate. Sci Rep 7:40147

    Article  Google Scholar 

  • Khani F, Aziz A, Hamedi-Nezhad S (2012) Simultaneous heat and mass transfer in natural convection about an isothermal vertical plate. J King Saud Univ Sci 24:123–129

    Article  Google Scholar 

  • Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124:803–806

    Article  Google Scholar 

  • Kulkarni AK, Jacobs HR, Hwang JJ (1987) Similarity solution for natural convection flow over an isothermal vertical wall immersed in thermally stratified medium. Int J Heat Mass Transf 30:691–698

    Article  Google Scholar 

  • Molla MM, Yao LS (2008) Non-Newtonian natural convection along a vertical heated wavy surface using a modified power-law viscosity model. J Heat Transf 131:012501–012506

    Article  Google Scholar 

  • Molla MM, Biswas A, Al-Mamun A, Hossain MA (2014) Natural convection flow along an isothermal vertical flat plate with temperature dependent viscosity and heat generation. J Comput Eng 2014:13

    Article  Google Scholar 

  • Mollendorf JC, Gebhart B (1974) Axisymmetric natural convection flows resulting from combined buoyancy effects of thermal and mass diffusion. In: Fifth International Heat Transfer Conference, Tokyo, pp 10–14

  • Muthucumaraswamy R, Ganesan P (2001) First-order chemical reaction on flow past an impulsively started vertical plate with uniform heat and mass flux. Acta Mech 147:45–57

    Article  MATH  Google Scholar 

  • Paola MD, Zingales M (2012) Exact mechanical models of fractional hereditary materials. J Rheol 56:983

    Article  Google Scholar 

  • Pfitzenreiter T (2004) A physical basis for fractional derivatives in constitutive equations. J Appl Math Mech 84:284–287

    MATH  Google Scholar 

  • Rubbab Q, Vieru D, Fetecau C, Fetecau C (2013) Natural convection flow near a vertical plate that applies a shear stress to a viscous fluid. PLoS ONE 8:e78352

    Article  Google Scholar 

  • Saha SC, Gu YT, Molla MM, Siddiqa S, Hossain MA (2012) Natural convection from a vertical plate embedded in a stratified medium with uniform heat source. Desalin Water Treat 44:7–14

    Article  Google Scholar 

  • Schenk J, Altmann R, de Wit JPA (1976) Interaction between heat and mass transfer in simultaneous natural convection about an isothermal vertical flat plate. Appl Sci Res 32:599–606

    Article  Google Scholar 

  • Shah NA, Khan I (2016) Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives. Eur Phys J C 76:362

    Article  Google Scholar 

  • Siddiqa S, Asghar S, Hossain MA (2010) Natural convection flow over an inclined flat plate with internal heat generation and variable viscosity. Math Comput Model 52:1739–1751

    Article  MathSciNet  MATH  Google Scholar 

  • Soundalgekar VM, Patil MR (1980) Stokes problem for infinite vertical plate with constant heat flux. Astrophys Space Sci 70:179–182

    Article  MATH  Google Scholar 

  • Soundalgekar VM, Birajdar NS, Darwhekar VK (1984) Mass-transfer effects on the flow past an impulsively started infinite vertical plate with variable temperature or constant heat flux. Astrophys Space Sci 100:159–164

    Article  Google Scholar 

  • Tenreiro Machado JA, Silva MF, Barbosa RS, Jesus ISR, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng 2010:1–34

    Article  MATH  Google Scholar 

  • Tippa S, Narahari M, Pendyala R (2014) Dufour effect on unsteady natural convection flow past an infinite vertical plate with constant heat and mass fluxes. AIP Conf Proc 1621:470–477

    Article  Google Scholar 

  • Toshiyuki M, Kenzo K (1990) Natural convection heat transfer from a vertical heated plate. Heat Transf Jpn Res 19:57

    Google Scholar 

  • Zingales M (2016) An exact thermodynamical model of power-law temperature time scaling. Ann Phys 365:24–37

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author Nehad Ali Shah is highly thankful to ASSMS, GC University Lahore, and Higher Education Commission of Pakistan for facilitating this work. The author Thanaa Elnaqeeb is grateful to Zagazig University for facilitating this work. The author Shaowei Wang is grateful to National Natural Science Foundation of China (Grant No. 11672164) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehad Ali Shah.

Additional information

Communicated by Antonio José Silva Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N.A., Elnaqeeb, T. & Wang, S. Effects of Dufour and fractional derivative on unsteady natural convection flow over an infinite vertical plate with constant heat and mass fluxes. Comp. Appl. Math. 37, 4931–4943 (2018). https://doi.org/10.1007/s40314-018-0606-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0606-6

Keywords

Mathematics Subject Classification

Navigation