Skip to main content
Log in

Comparative Study of DNS, LES and Hybrid LES/RANS of Turbulent Boundary Layer with Heat Transfer Over 2d Hill

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper first presents the turbulent heat transfer phenomenon of the boundary layer over a 2-dimensional hill using the direct numerical simulation (DNS). DNS results reveal turbulent heat transfer phenomena in the boundary layer over a 2-dimensional hill affected by the flow acceleration and the concave wall at the foreface of a hill, the convex wall at the top of the hill, and the flow deceleration, separation, and reattachment and the concave wall at the back of the hill. The prediction of turbulent heat transfer, the turbulence models of LES and HLR should be assessed in such heat transfer because these models have seldom been evaluated in the complex turbulent heat transfer. Therefore, this paper also presents evaluations of predictions of LES and HLR in the complicated turbulent heat transfer which is the boundary layer with heat transfer over a 2-dimensional hill. Consequently, this paper obviously shows the detailed turbulent heat transfer phenomena of a boundary layer over a 2-dimensional hill via DNS, and the evaluation results of prediction accuracy of LES and HLR for the heat transfer. LES and HLR give good prediction in comparison with DNS results, but the predicted reattachment and separation points are slightly different from DNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15, 301–314 (1972)

    Article  Google Scholar 

  2. Jones, W.P., Launder, B.E.: The calculation of low-reynolds-number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer 16, 1119–1130 (1973)

    Article  Google Scholar 

  3. Abe, K., Kondoh, T., Nagano, Y.: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—i. Flow field calculations. Int. J. Heat Mass Transfer 37, 139–151 (1994)

    Article  MATH  Google Scholar 

  4. Abe, K., Kondoh, T., Nagano, Y.: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—ii. Thermal field calculations. Int. J. Heat Mass Transfer 38, 1467–1481 (1995)

    Article  MATH  Google Scholar 

  5. Craft, T.J., Launder B.E., Suga, K.: Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat Fluid Flow 17, 3–10 (1996)

    Article  Google Scholar 

  6. Apsley, D.D., Leschziner, M.A.: Advanced turbulence modelling of separated flow in a diffuser. Flow Turbul. Combust. 63, 81–112 (1999)

    Article  Google Scholar 

  7. Wang, C., Jang, Y.J., Leschziner, M.A.: Modelling two- and three-dimensional separation from curved surfaces with anisotropy-resolving turbulence closures. Int. J. Heat Fluid Flow 25, 499–512 (2004)

    Article  Google Scholar 

  8. Younis, B.A., Speziale C.G., Clark, T.T.: A rational model for the turbulent scalar fluxes. Proc. R. Soc. Lond. 461, 575–594 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hattori, H., Morita, A., Nagano, Y.: Nonlinear eddy diffusivity models reflecting buoyancy effect for wall shear flows and heat transfer. Int. J. Heat Fluid Flow 27, 671–683 (2006)

    Article  Google Scholar 

  10. Hattori, H., Ohiwa, N., Kozuka, M., Nagano, Y.: Improvement of nonlinear eddy diffusivity model for rotational turbulent heat transfer at various rotating axes. Fluid Dyn. Res. 41, 012402 (26pages) (2009a)

    Article  Google Scholar 

  11. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  12. Germano, M., Piomelli, U., Moin, P.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  13. Lilly, D.K.: A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A-4, 633–635 (1992)

    Google Scholar 

  14. Breuer, M.: A challenging test case for large eddy simulation: high reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21, 648–654 (2000)

    Article  Google Scholar 

  15. Inagaki, M., Kondoh, T., Nagano, Y.: A mixed-time-scale sgs model with fixed model-parameters for practical LES. J. Fluids Eng. 127(1), 1–13 (2005)

    Article  Google Scholar 

  16. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tessicini, F., Li, N., Leschziner, M.A.: Large-eddy simulation of three-dimensional flow around a hill-shaped obstruction with a zonal near-wall approximation. Int. J. Heat Fluid Flow 28, 894–908 (2007)

    Article  Google Scholar 

  18. Inagaki, M., Hattori, H., Nagano, Y.: A mixed-time-scale sgs model for thermal field at various prandtl numbers. In: Proceedings of 7th International ERCOFTAC Symposium—ETMM 7, pp. 773–778 (2008)

  19. Inagaki, M.: A new wall-damping function for large eddy simulation employing kolmogorov velocity scale. Int. J. Heat Fluid Flow 32(1), 26–40 (2011)

    Article  Google Scholar 

  20. Tamura, T.: Towards practical use of LES in wind engineering. J. Wind Eng. Ind. Aerodyn. 96, 1451–1471 (2008)

    Article  Google Scholar 

  21. Nikitin, N.V., Nicouda, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)

    Article  Google Scholar 

  22. Breuer, M., Joviĉić, N., Mazaev, K.: Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence. Int. J. Numer. Methods Fluids 41, 357–388 (2003)

    Article  MATH  Google Scholar 

  23. Davidson, L., Peng, S.H.: Hybrid LES-RANS modelling: a one-equation SGS model combined with a k-ω model for predicting recirculating fows. Int. J. Numer. Methods Fluids 43, 1003–1018 (2003)

    Article  MATH  Google Scholar 

  24. Hamba, F.: A hybrid RANS/LES simulation of turbulent channel flow. Theor. Comput. Fluid Dyn. 16, 387–403 (2003)

    Article  MATH  Google Scholar 

  25. Tessicini, F., Temmerman, L., Leschziner, M.A.: Approximate near-wall treatments based on zonal and hybrid RANS-LES methods for LES at high reynolds numbers. Int. J. Heat Fluid Flow 27, 789–799 (2006)

    Article  Google Scholar 

  26. Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)

    Article  Google Scholar 

  27. Breuer, M., Jaffrézic, B., Arora, K.: Hybrid LES-RANS technique based on a one-equation near-wall model. Theor. Comput. Fluid Dyn. 22, 157–187 (2008)

    Article  MATH  Google Scholar 

  28. Jakirlić, S., Manceau, R., Sarić, S., Fadai-Ghotbi, A., Kniesner, B., Carpy, S., Kadavelil, G., Friess, C., Tropea, C., Borée, J.: LES, zonal and seamless hybrid LES/RANS: rationale and application to free and wall-bounded flows involving separation and swirl. Num. Sim. of Turbulent Flows & Noise Generation 104, 253–282 (2009)

    Article  Google Scholar 

  29. Breuer, M., Aybay, O., Jaffrézic, B., Visonneau, M., Deng, G., Guilmineau, M., Chikhaoui, O.: Hybrid LES-RANS-coupling for complex flows with separation. Num. Sim. of Turbulent Flows & Noise Generation 104, 201–229 (2009a)

    Article  Google Scholar 

  30. Hattori, H., Houra, T., Nagano, Y.: Direct numerical simulation of stable and unstable turbulent thermal boundary layers. Int. J. Heat Fluid Flow 28, 1262–1271 (2007)

    Article  Google Scholar 

  31. Hattori, H., Nagano, Y.: Investigation of turbulent boundary layer over forward-facing step via direct numerical simulation. Int. J. Heat Fluid Flow 31, 284–294 (2010)

    Article  Google Scholar 

  32. Miyamoto, N., Hattori, H., Tagawa, M., Nagano, Y.: DNS of turbulent heat transfer in boundary layer over forward-facing step. In: Proceedings of 7th JSME-KSME TFEC, p. 114 (2008)

  33. Hattori, H., Miyamoto, N., Nagano, Y.: DNS investigation of heat transfer structures of turbulent boundary layer over forward-facing step. In: Proceedings of 6th International Symposium on Turbulence, Heat and Mass Transfer, pp. 127–130 (2009b)

  34. Hattori, H., Noda, T., Tagawa, M., Nagano, Y.: Structures and mechanism of heat and mass transport phenomena in turbulent boundary layer with separation and reattachment. In: Proceedings of the 7th International Symposium on Turbulence and Shear Flow Phenomena, p. 6 (2011)

  35. Breuer, M., Peller, N., Rapp, Ch., Manhart, M.: Flow over periodic hills—numerical and experimental study in a wide range of reynolds numbers. Comput. Fluids 38, 433–457 (2009)

    Article  MATH  Google Scholar 

  36. Shah, S.I.: Vortical structures in a decelerated wall-bounded turbulent flow. J. Fluids Eng. 133, 9 (2011)

    Article  Google Scholar 

  37. Baskaran, V., Smits, A.J., Joubert, P.N.: A turbulent flow over a curved hill. Part 1. Growth of an internal boundary layer. J. Fluid Mech. 182, 47–83 (1987)

    Article  Google Scholar 

  38. Baskaran, V., Smits, A.J., Joubert, P.N.: A turbulent flow over a curved hill. Part 2. Effects of streamline curvature and streamwise pressure gradient. J. Fluid Mech. 232, 377–402 (1991)

    Article  Google Scholar 

  39. Almeida, G.P., Durao, D.F.G., Heitor, M.V.: Wake flows behind two-dimensional model hills. Exp. Thermal Fluid Sci. 7, 87–101 (1993)

    Article  Google Scholar 

  40. Webster, D.R., Degraaff, D.B., Eaton, J.K.: Turbulence characteristics of a boundary layer over a swept bump. J. Fluid Mech. 320, 53–69 (1996)

    Article  Google Scholar 

  41. Houra, T., Nagano, Y.: Turbulent heat and fuid fow over a two-dimensional hill. Flow Turbul. Combust. 83, 389–406 (2009)

    Article  MATH  Google Scholar 

  42. Wu, X., Hattori, H., Nagano, Y.: Low-reynolds-number one-equation turbulence model with mixed time-scale for complex flows. Trans. JSME B-72, 1674–1681 (2006)

    Google Scholar 

  43. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusofz, J.: Combined immersed boundary finite difference methods for three dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Houra, T., Tagawa, M., Nagano, Y.: Turbulence measurements of flows over a heated two-dimensional hill. In: Proc. of 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conf., pages CD–ROM (6 p.) (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, H., Umehara, T. & Nagano, Y. Comparative Study of DNS, LES and Hybrid LES/RANS of Turbulent Boundary Layer with Heat Transfer Over 2d Hill. Flow Turbulence Combust 90, 491–510 (2013). https://doi.org/10.1007/s10494-013-9450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9450-3

Keywords

Navigation