Skip to main content
Log in

Adaptive Fast Terminal Sliding Mode Control of Magnetic Levitation System

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Adaptive sliding mode control schemes are proposed for the control problem of a magnetic levitation system. Two control laws based on sliding mode concepts are developed to deal with this problem. For the first controller, an adaptive sliding mode controller is designed to control a magnetic levitation system. The other controller is also developed by combining a fast terminal sliding mode control method with an adaptive technique. Both controllers can guarantee finite-time reachability of a given desired position of a magnetic levitation system. The stability of the controlled system under presented controllers is proved by using the Lyapunov stability theorem. An example of a magnetic levitation system is given and simulation results are included to verify the performance of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almutairi, N. B., & Zribi, M. (2006). Sliding mode control of coupled tanks. Mechatronics, 16, 427–441.

    Article  Google Scholar 

  • AL-Muthairi, N. F., & Zribi, M. (2004). Sliding mode control of a magnetic levitation system. Mathematical Problems in Engineering, 2004, 93–107.

  • Barie, W., & Chiasson, J. (1996). Linear and nonlinear state-space controllers for magnetic levitation. International Journal of Systems Science, 27, 1153–1163.

    Article  MATH  Google Scholar 

  • Bhat, S., & Berstein, D. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38, 751–766.

    Article  MathSciNet  MATH  Google Scholar 

  • El Rifai, O. & Youcef-Toumi, K. (1998). Achievable performance and design trade-offs in magnetic levitation control. In Proceedings of the 5th international workshop on advanced motion control (AMC’98), Coimbra, Portugal (pp. 586–591).

  • Feng, Y., Yu, X. H., Man, Z. H. (2001). Adaptive fast terminal sliding mode tracking control of robotic manipulator. In Proceedings of the 40th IEEE conference on decision and control (pp. 4021–4026).

  • Fujita, M., Matsumura, F., & Uchida, K. (1990). Experiments on the \(H^\infty \)disturbance attenuation control of magnetic suspension system. In Proceedings of the 29th IEEE conference on decision and control, Hawaii (Vol. 5, pp. 2773–2778).

  • Fujita, M., Namerikawa, T., Matsumura, F., & Uchida, K. (1995). Synthesis of an electromagnetic suspension system. IEEE Transactions on Automatic Control, 40, 530–536.

    Article  Google Scholar 

  • Green, S. A., & Craig, K. C. (1998). Robust, design, nonlinear control of magnetic-levitation systems. Journal of Dynamics, Measurement, and Control, 120, 488–495.

    Article  Google Scholar 

  • Hajjaji, A., & Ouladsine, M. (2001). Modeling and nonlinear control of magnetic levitation systems. IEEE Transactions on Industrial Electronics, 48, 831–838.

    Article  Google Scholar 

  • Huang, C.-M., Yen, J.-Y., & Chen, M.-S. (2000). Adaptive nonlinear control of repulsive maglev suspension systems. Control Engineering Practice, 8, 1357–1367.

    Article  Google Scholar 

  • Hung, J. Y., Gao, W., & Hung, J. C. (1993). Variable structure control: A survey. IEEE Transactions on Industrial Electronics, 40, 2–22.

    Article  Google Scholar 

  • Keleher, P. G., & Stonier, R. J. (2001). Adaptive terminal sliding mode control of a rigid robotic manipulator with uncertain dynamics incorporating constraint inequalities. ANZIAM Journal, 43, 102–153.

    MathSciNet  MATH  Google Scholar 

  • Keleher, P. G., & Stonier, R. J. (2001). Adaptive terminal sliding mode control of rigid robotic system with uncertain dynamics incorporating constraint inequalities. ANZIAM Journal, 43, 102–153.

    MathSciNet  MATH  Google Scholar 

  • Kim, Y. C., & Kim, H. K. (1994). Gain scheduled control of magnetic suspension systems. In Proceedings of the American control conference, Maryland (Vol. 3, pp. 3127–3131).

  • Lairi, M. & Bloch, G. (1999). A neural network with minimal structure for maglev system modeling and control. In Proceedings of the 1999 IEEE international symposium on intelligent control/intelligent systems and semiotics, Massachusetts (pp. 40–45).

  • Li, H., Dou, L., & Su, Z. (2013). Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator. International Journal of Systems Science, 44(3), 401–415.

    Article  MathSciNet  MATH  Google Scholar 

  • Man, Z. H., Mike, O., & Yu, X. H. (1999). A robust adaptive terminal sliding mode control for rigid robotic manipulators. Journal of Intelligent and Robotic Systems, 24, 23–41.

    Article  MATH  Google Scholar 

  • Tang, Y. (1998). Terminal sliding mode control for rigid robots. Automatica, 34, 51–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Tao, C. W., & Taur, J. S. (2004). Adaptive fuzzy terminal sliding mode controller for linear system with mismatched time-varying uncertainties. IEEE Transactions on Systems, 34(1), 255–262.

    Google Scholar 

  • Trumper, D. L., Olson, M., & Subrahmanyan, P. K. (1997). Linearizing control of magnetic suspension systems. IEEE Transaction on Control Systems Technology, 5, 427–438.

    Article  Google Scholar 

  • Wu, S., Radice, G., & Sun, Z. (2014). Robust finite-time control for flexible spacecraft attitude maneuver. Journal of Aerospace Engineering, 27, 185–190.

    Article  Google Scholar 

  • Wu, Y. Q., Yu, X. H., & Man, Z. H. (1998). Terminal sliding mode control design for uncertain dynamic systems. Systems and Control Letters, 34, 281–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, Z. J. & Tateishi, M. (1998). Robust nonlinear control of a magnetic levitation system via backstepping approach. In Proceedings of the 37th SICE annual conference (SICE ’98) (pp. 1063–1066).

  • Yong, K. D., Utkin, V. I., & Ozguner, U. (1999). A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology, 7, 328–342.

  • Yu, X. H., & Man, Z. H. (2002). Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Circuits and Systems, 49, 261–264.

  • Zhao, F., & Thornton, R. (1992). Automatic design of a maglev controller in state space. In Proceedings of the 31st conference on decision and control, Tucson, Ariz (pp. 2562–2567).

  • Zhao, F., Loh, S. C., & May, J. A. (1999). Phase-space nonlinear control toolbox: the maglev experience. Hybrid Systems V: Springer. Lecture Notes in Computer Science.

  • Zinober, A. S. I. (1994). Variable structure and Lyapunov control. Berlin: Springer.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Boonsatit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonsatit, N., Pukdeboon, C. Adaptive Fast Terminal Sliding Mode Control of Magnetic Levitation System. J Control Autom Electr Syst 27, 359–367 (2016). https://doi.org/10.1007/s40313-016-0246-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0246-2

Keywords

Navigation