Skip to main content
Log in

Control of Overhead Crane System Using Adaptive Model-Free and Adaptive Fuzzy Sliding Mode Controllers

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this study, a model-free adaptive controller (MFAC) using feedback linearization and an adaptive fuzzy sliding mode controller (AFSMC) using fuzzy approximation are employed to control an underactuated overhead crane system. Both controllers use trolley position and load swing angle information for controlling process. Innovation of the proposed MFAC is based on utilizing the appropriate control signal value of last level for determining the control signal value of new level which depends on position error in these levels. In AFSMC, sliding mode scheme is exploited adaptive Sugeno fuzzy algorithm to update estimation of unknown function and counteract the effect of unknown nonlinear terms of overhead crane’s dynamic model. External disturbances such as the wind and the hit are also considered to verify the efficiency of the proposed model-free methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Lee, H., Liang, Y., & Segura, D. (2006). A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting. Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, 128(4), 842–845.

    Article  Google Scholar 

  • Almutairi, N., & Zribi, M. (2009). Sliding mode control of a three dimensional overhead crane. Journal of Vibration and Control, 15(11), 1679–1730.

    Article  MATH  MathSciNet  Google Scholar 

  • Ngo, Q. H., & Hong, K.-S. (2012). Sliding mode antisway control of an offshore container crane. IEEE/ASME Transactions on Mechatronics, 17(2), 201–209.

    Article  Google Scholar 

  • Park, H., Chwa, D., & Hong, K. S. (2007). A feedback linearization control of container cranes: Varying rope length. The International Journal of Control, Automation, and Systems, 5(4), 379–387.

    Google Scholar 

  • Le, T. A., Kim, G. H., Kim, M. Y., & Lee, S. G. (2012). Partial feedback linearization control of overhead cranes with varying cable lengths. International Journal of Precision Engineering and Manufacturing, 13(2), 1229–8557.

    Google Scholar 

  • Yang, J. H., & Yang, K. S. (2007). Adaptive coupling control for overhead crane systems. Mechatronics, 17(2/3), 143–152.

    Article  Google Scholar 

  • Yang, J. H., & Shen, S. H. (2010). Novel approach for adaptive tracking control of a 3D overhead crane system. Journal of Intelligent Robot System, 62(1), 59–80.

    Article  Google Scholar 

  • Fang, Y., Ma, B., Wang, P., & Zhang, X. (2012). A motion planning-based adaptive control method for an underactuated crane system. IEEE Transactions on Control System Technology, 20(1), 241–248.

    Google Scholar 

  • Sun, N., & Fang, Y. (2012). New energy analytical results for the regulation of underactuated overhead cranes: An end-effector motion based approach. IEEE Transactions on Industrial Electronics, 59(12), 4723–4734.

    Article  Google Scholar 

  • Chang, C. Y. (2007). Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Transactions on Industrial Informatics, 3(2), 164–172.

    Article  Google Scholar 

  • Wang, L. X. (1993). Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 1, 146–155.

    Article  Google Scholar 

  • Ngo, Q. H., & Hong, K.-S. (2012). Adaptive sliding mode control of container cranes. IET Control Theory and Applications, 6(5), 662–668.

    Article  MathSciNet  Google Scholar 

  • Le, T. A., Moon, S. C., Lee, W. G., & Lee, S. G. (2013). Adaptive sliding mode control of the overhead crane with varying cable length. Journal of Mechanical Science and Technology, 27(3), 885–893.

    Article  Google Scholar 

  • Park, M., Chwa, D., & Hong, S. (2008). Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Transactions on Industrial Electronics, 55(11), 3972–3984.

    Article  Google Scholar 

  • Bessa, W. M., & Barrêto, R. S. S. (2010). Adaptive fuzzy sliding mode control of uncertain nonlinear systems. Control & Automação, 21, 117–126.

    Google Scholar 

  • Ma, Van, & Chen, Xue, Xie, xiaohua (2009). A novel model free adaptive controller with tracking differentiator, IEEE Proceedings of Conference on Mechatronics and Automation, China (pp. 4191–4196).

  • Hou, Z., & Jin, S. (2011). A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Transactions on Control Systems Technology, 19(6), 1549–1558.

    Article  Google Scholar 

  • Khalil, H. K. (2001). Nonlinear systems (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. Upper Saddle River, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Merakeb, A., Achemine, F., & Messine, F. (2013). Optimal time control to swing-up the inverted pendulum-cart in open-loop form, IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) (pp. 1–4).

  • Sooyong, J., & Wen, J. T. (2004). Nonlinear model predictive control for the swing-up of a rotary inverted pendulum. Journal of Dynamic Systems, Measurement, and Control, 126(3), 666–673.

    Article  Google Scholar 

  • Mason, P., Broucke, M., & Piccoli, B. (2008). Time optimal swing-up of the planar pendulum. IEEE Transactions on Automatic Control, 53(8), 1876–1886.

    Article  MathSciNet  Google Scholar 

  • Singer, N., & Seering, W. (1990). Preshaping command inputs to reduce system vibration. Journal of Dynamic Systems, Measurement, and Control, 112(1), 76–82.

  • Singhose, W., Seering, W., & Singer, N. (1994). Residual vibration reduction using vector diagrams to generate shaped inputs. Journal of Mechanical Design, 116(2), 654–659.

    Article  Google Scholar 

  • Xie, X., Huang, J., & Liang, Z. (2013). Vibration reduction for flexible systems by command smoothing. Mechanical Systems and Signal Processing, 39, 461–470.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Badamchizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezeshki, S., Badamchizadeh, M.A., Ghiasi, A.R. et al. Control of Overhead Crane System Using Adaptive Model-Free and Adaptive Fuzzy Sliding Mode Controllers. J Control Autom Electr Syst 26, 1–15 (2015). https://doi.org/10.1007/s40313-014-0152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-014-0152-4

Keywords

Navigation