Skip to main content
Log in

Optimality Conditions for Rank-Constrained Matrix Optimization

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this paper, we comprehensively study optimality conditions for rank-constrained matrix optimization (RCMO). By calculating the Clarke tangent and normal cones to a rank-constrained set, along with the given Fréchet, Mordukhovich normal cones, we investigate four kinds of stationary points of the RCMO and analyze the relations between each stationary point and local/global minimizer of the RCMO. Furthermore, the second-order optimality condition of the RCMO is achieved with the help of the Clarke tangent cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le, H.Y.: A variational approach of the rank function. J. Span. Soc. Stat. Oper. Res. 7(4), 207–240 (2013)

    MathSciNet  MATH  Google Scholar 

  2. David, J.: Algorithms for Analysis and Design of Robust Controllers. PhD thesis, Kat. Univ. (1994)

  3. Fazel, M.: Matrix Rank Minimization with Applications. PhD thesis, Stanford University (2002)

  4. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y.Q., Xiu, N.H., Peng, D.T.: Global solutions of non-Lipschitz \(S_2\)-\(S_p\) minimization over the positive semidefinite cone. Optim. Lett. 8(7), 2053–2064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, Y.: Structured Low Rank Matrix Optimization Problems: A Penalty Approach. PhD thesis, National University of Singapore (2010)

  8. Nie, F.P., Huang, H., Ding, C.: Low-rank matrix recovery via efficient Schatten \(p\)-norm minimization. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 655–661. AAAI Press, Toronto (2012)

  9. Lu, Z.S., Zhang, Y., Li, X.R.: Penalty decomposition methods for rank minimization. Optim. Methods Softw. 30, 531–558 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delgado, R.A., Aguero, J.C., Goodwin, G.C.: A rank-constrained optimization approach: application to factor analysis. IFAC Proc. Vol. 47(3), 10373–10378 (2014)

    Article  Google Scholar 

  11. Wen, Z.W., Yin, W.T., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bi, S., Pan, S., Sun, D.: A Multi-stage Convex Relaxation Approach to Noisy Structured Low-Rank Matrix Recovery, available at https://www.researchgate.net/publication/314948486 (2017)

  13. Zhou, S., Xiu, N., Qi, H.: Robust Euclidean Embedding via EDM Optimization, available at http://ww.researchgate.net/pubulication/323 945500 (2018)

  14. Cason, T.P., Absil, P.A., Van Dooren, P.: Iterative methods for low rank approximation of graph similarity matrices. Linear Algebra Appl. 438(4), 1863–1882 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via Lojasiewicz inequality. SIAM J. Optim. 25(1), 622–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, G.F.: Rank-Constrained Optimization: A Riemannian Manifold Approach. PhD thesis, Florida State University (2015)

  17. Zhou, G.F., Huang, W., Gallivan, K.A., Dooren, P.V., Absil, P.A.: A Riemannian rank-adaptive method for low-rank optimization. Neurocomputing 192, 72–80 (2016)

    Article  Google Scholar 

  18. Luke, D.R.: Prox-regularity of rank constraint sets and implications for algorithms. J. Math. Imaging Vis. 47(3), 231–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  20. Hiriart-Urruty, J.B., Le, H.Y.: From Eckart and Young approximation to Moreau envelopes and vice versa. Rairo Recherche Operationnelle 47, 299–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Helmke, U., Shayman, M.A.: Critical points of matrix least squares distance functions. Linear Algebra Appl. 215, 1–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  23. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, II: Applications. Springer, Berlin (2006)

    Book  Google Scholar 

  24. Guttman, L.: Enlargement methods for computing the inverse matrix. Ann. Math. Stat. 17, 336–343 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hosseini, S., Luke, D.R., Uschmajew, A.: Tangent and Normal Cones for Low-Rank Matrices. Preprint, available at http://neitzel.ins.uni-bonn.de/research/pub/hosseini/LowRankCones.pdf (2017)

  26. Beck, A., Eldar, Y.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23, 1480–1509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Negahban, S., Yu, B., Wainwright, M.J., Ravikumar, P.: A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Adv. Neural Inf. Process. Syst. 1348–1356 (2009)

  28. Bahmani, S., Boufounos, P., Raj, B.: Greedy sparsity-constrained optimization. J. Mach. Learn. Res. 14, 807–841 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Yuan, X., Li, P., Zhang, T.: Gradient hard thresholding pursuit. J. Mach. Learn. Res. 18, 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Rong Li.

Additional information

This research was supported by the National Natural Science Foundation of China (Nos. 11431002 and 11371116).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XR., Song, W. & Xiu, NH. Optimality Conditions for Rank-Constrained Matrix Optimization. J. Oper. Res. Soc. China 7, 285–301 (2019). https://doi.org/10.1007/s40305-019-00245-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-019-00245-0

Keywords

Mathematics Subject Classification

Navigation