Skip to main content
Log in

Matrix Optimization Over Low-Rank Spectral Sets: Stationary Points and Local and Global Minimizers

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider matrix optimization with the variable as a matrix that is constrained into a low-rank spectral set, where the low-rank spectral set is the intersection of a low-rank set and a spectral set. Three typical spectral sets are considered, yielding three low-rank spectral sets. For each low-rank spectral set, we first calculate the projection of a given point onto this set and the formula of its normal cone, based on which the induced stationary points of matrix optimization over low-rank spectral sets are then investigated. Finally, we reveal the relationship between each stationary point and each local/global minimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A set \(\mathcal {K}\in \mathbb {R}^n\) is said to be symmetric if \(Px\in \mathcal {K}\) for every \(x\in \mathcal {K}\) and every \(P\in \mathbb {P}^n\), where \(\mathbb {P}^n\) denotes the set of all \(n\times n\) permutation matrices. ( For those matrices, that have only one nonzero entry in every row and column, which is 1, see [38].)

References

  1. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Markovsky, I.: Low Rank Approximation. Springer, London (2012)

    Book  MATH  Google Scholar 

  3. Ding, C.: An introduction to a class of matrix optimization problems. Ph.D. thesis, National University of Singapore (2012)

  4. Udell, M., Horn, C., Zadeh, R.B., Boyd, S.P.: Generalized low rank models. Mach. Learn. 9(1), 1–118 (2016)

    Article  MATH  Google Scholar 

  5. Davenport, M.A., Romberg, J.: An overview of low-rank matrix recovery from incomplete observations. IEEE J. Sel. Top. Signal Process. 10(4), 608–622 (2016)

    Article  Google Scholar 

  6. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

  7. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Marjanovic, G., Solo, V.: On \(l_q\) optimization and matrix completion. IEEE Trans. Signal Process. 60(11), 5714–5724 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn. Res. 13(Nov), 3441–3473 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Nie, F., Wang, H., Cai, X., Huang, H., Ding, C.: Robust matrix completion via joint schatten p-norm and \(l_{p}\)-norm minimization. In: IEEE International Conference on Data Mining, pp. 566–574 (2012)

  11. Chen, Y., Xiu, N., Peng, D.: Global solutions of non-lipschitz \(s_{2}\)-\(s_{p}\) minimization over the positive semidefinite cone. Optim. Lett. 8(7), 2053–2064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, Y.B.: An approximation theory of matrix rank minimization and its application to quadratic equations. Linear Algebra Appl. 437(1), 77–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yao, H., Debing, Z., Jieping, Y., Xuelong, L., Xiaofei, H.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)

    Article  Google Scholar 

  14. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95(2), 329–357 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Journée, M., Bach, F., Absil, P.A., Sepulchre, R.: Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim. 20(5), 2327–2351 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 665–674. ACM (2013)

  18. Hardt, M.: Understanding alternating minimization for matrix completion. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 651–660. IEEE (2014)

  19. Sun, R., Luo, Z.: Guaranteed matrix completion via non-convex factorization. IEEE Trans. Inf. Theory 62(11), 6535–6579 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, Y.: Structured low rank matrix optimization problems: A penalty approach. Ph.D. thesis, National University of Singapore (2010)

  21. Kim, S.J., Moon, Y.H.: Structurally constrained \({H}_{2}\) and \({H}_{\infty }\) control: a rank-constrained LMI approach. Automatica 42(9), 1583–1588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Delgado, R.A., Agüero, J.C., Goodwin, G.C.: A rank-constrained optimization approach: application to factor analysis. IFAC Proc. Vol. 47(3), 10373–10378 (2014)

    Article  Google Scholar 

  23. Bi, S., Pan, S.: Error bounds for rank constrained optimization problems and applications. Oper. Res. Lett. 44(3), 336–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, S., Xiu, N., Qi, H.: A fast matrix majorization-projection method for penalized stress minimization with box constraints. IEEE Trans. Signal Process. 66(16), 4331–4346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luke, D.R.: Prox-regularity of rank constraint sets and implications for algorithms. J. Math. Imaging Vis. 47(3), 231–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  27. Cason, T.P., Absil, P.A., Dooren, P.V.: Iterative methods for low rank approximation of graph similarity matrices. Linear Algebra Appl. 438(4), 1863–1882 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via łojasiewicz inequality. SIAM J. Optim. 25(1), 622–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, G., Huang, W., Gallivan, K.A., Van Dooren, P., Absil, P.A.: A Riemannian rank-adaptive method for low-rank optimization. Neurocomputing 192, 72–80 (2016)

    Article  Google Scholar 

  30. Li, X., Song, W., Xiu, N.: Optimality conditions for rank-constrained matrix optimization. J. Oper. Res. Soc. China 7(2), 285–301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: International Symposium on Information Processing in Sensor Networks (2004)

  33. Ji, S., Sze, K.F., Zhou, Z., So, M.C., Ye, Y.: Beyond convex relaxation: a polynomial-time non-convex optimization approach to network localization. In: IEEE Infocom (2013)

  34. Borsdorf, R., Higham, N.J., Raydan, M.: Computing a nearest correlation matrix with factor structure. SIAM J. Matrix Anal. Appl. 31(5), 2603–2622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Higham, N.J.: Computing the nearest correlation matrix a problem from finance. IMA J. Numer. Anal. 22(3), 329–343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dukanovic, I., Rendl, F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. 109(2–3), 345–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kalev, A., Kosut, R.L., Deutsch, I.H.: Quantum tomography protocols with positivity are compressed sensing protocols. Nat. Partn. J. Quantum Inf. 1(1), 15018 (2015)

    Article  Google Scholar 

  38. Lewis, A.S.: Group invariance and convex matrix analysis. SIAM J. Matrix Anal. Appl. 17(4), 927–949 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tam, M.K.: Regularity properties of non-negative sparsity sets. J. Math. Anal. Appl. 447(2), 758–777 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lu, Z., Zhang, Y., Li, X.: Penalty decomposition methods for rank minimization. Optim. Methods Softw. 30(3), 531–558 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kyrillidis, A.: Rigorous optimization recipes for sparse and low rank inverse problems with applications in data sciences. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2014)

  42. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Berlin (2006)

    Book  Google Scholar 

  43. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2012)

    MATH  Google Scholar 

  44. Drusvyatskiy, D., Kempton, C.: Variational analysis of spectral functions simplified. J. Convex Anal. 25(1), 119–134 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Lu, Z.: Optimization over sparse symmetric sets via a nonmonotone projected gradient method (2015). arXiv preprint arXiv:1509.08581

  46. Pan, L., Xiu, N., Fan, J.: Optimality conditions for sparse nonlinear programming. Sci. China Math. 60(5), 1–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  49. Pan, L., Zhou, S., Xiu, N., Qi, H.D.: A convergent iterative hard thresholding for nonnegative sparsity optimization. Pac. J. Optim. 13(2), 325–353 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (11431002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrong Li.

Additional information

Communicated by Suliman Saleh Al-Homidan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiu, N. & Zhou, S. Matrix Optimization Over Low-Rank Spectral Sets: Stationary Points and Local and Global Minimizers. J Optim Theory Appl 184, 895–930 (2020). https://doi.org/10.1007/s10957-019-01606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01606-8

Keywords

Mathematics Subject Classification

Navigation