Skip to main content
Log in

Shape Analysis by Computing Geodesics on a Manifold via Cubic B-splines

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

When a parameterized probability density function is used to represent a landmark-based shape, the shape can be viewed as a point on the manifold that equips with a Riemannian metric corresponding to the mixture models. Hence, given two shapes parameterized by the same density model, the geodesic distance between them can be used for an appropriate shape distance measure. We provide a computational strategy, which is based on the cubic B-splines, to get geodesics and geodesic distances between plane shapes represented by the mixture of Gaussians. In contrast to the methods that discretize geodesic into a sequence of line segments, the proposed method is computationally efficient and numerically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://vision.lems.brown.edu/content/available-software-and-databases#Datasets-Shape.

References

  1. Bartoň, M., Calo, V.M.: Gauss-galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis. Comput Aided Des 82, 57–67 (2017)

    Article  MathSciNet  Google Scholar 

  2. Cohen, I., Ayache, N., Sulger, P.: Tracking points on deformable objects using curvature information. In: Proceedings of the Second European Conference on Computer Vision, ECCV 1992, pp. 458—466. Springer-Verlag, Berlin, Heidelberg (1992)

  3. Cootes, T.F., Taylor, C.J.: A mixture model for representing shape variation. Image V Comput 17(8), 567–573 (1999)

    Article  Google Scholar 

  4. Costa, S.I., Santos, S.A., Strapasson, J.E.: Fisher information distance: a geometrical reading. Discrete Appl Math 197, 59–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience, New York (1953)

    MATH  Google Scholar 

  6. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognit 36, 1929–1943 (2003)

    Article  MATH  Google Scholar 

  7. Donatelli, M., Molteni, M., Pennati, V., Serra-Capizzano, S.: Multigrid methods for cubic spline solution of two point (and 2d) boundary value problems. Appl Numer Math 104, 15–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farin, G., Hansford, D.: The essentials of CAGD. Peters/CRC Press, A. K (2000)

    Book  MATH  Google Scholar 

  9. Fox, L.: The numerical solution of two-point boundary problems in ordinary differential equations. Clarendon Press, Oxford (1957)

    MATH  Google Scholar 

  10. Goodall, C.: Procrustes methods in the statistical analysis of shape. J Royal Stat Soc Ser B Methodol 53(2), 285–321 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Keller, H.B.: Numerical methods for two-point boundary-value problems. Courier Dover Publications, Newyork (2018)

    MATH  Google Scholar 

  12. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull London Math Soc 16(2), 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khan, A.: Parametric cubic spline solution of two point boundary value problems. Appl Math Comput 154(1), 175–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klassen, E., Srivastava, A.: Geodesics between 3D closed curves using path-straightening. In: Computer Vision. ECCV 2006, vol. 3951, pp. 95–106. Springer-Verlag, Berlin, Heidelberg (2006)

  15. Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans Pattern Anal Mach Intell 26, 372–383 (2004)

    Article  Google Scholar 

  16. Lyche, T., Manni, C., Speleers, H.: Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement, pp. 1–76. Springer, Cham (2018)

    MATH  Google Scholar 

  17. Mio, W., Liu, X.: Landmark representation of shapes and Fisher-Rao geometry. In: 2006 International Conference on Image Processing, pp. 2113–2116 (2006)

  18. Nowak, J., Eng, R.C., Matz, T., Waack, M., Persson, S., Sampathkumar, A., Nikoloski, Z.: A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells. Nat Commun 12, 458 (2021)

    Article  Google Scholar 

  19. Peter, A., Rangarajan, A.: A new closed-form information metric for shape analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 249–256. Springer (2006)

  20. Peter, A.M., Rangarajan, A.: Information geometry for landmark shape analysis: Unifying shape representation and deformation. IEEE Trans Pattern Anal Mach Intell 31(2), 337–350 (2009)

    Article  Google Scholar 

  21. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. In: Bulletin of the Calcutta Mathematical Society, pp. 81–91. Springer, Newyork (1945)

    Google Scholar 

  22. Rentrop, P.: A Taylor series method for the numerical solution of two-point boundary value problems. Numer Math 31(4), 359–375 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Riviere, M.K., Ueckert, S., Mentré, F.: An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models. Biostatistics 17, 737–750 (2016)

    Article  MathSciNet  Google Scholar 

  24. Schmidt, F.R., Clausen, M., Cremers, D.: Shape matching by variational computation of geodesics on a manifold. In: Proceedings of the 28th Conference on Pattern Recognition, DAGM 2006, pp. 142–151. Springer-Verlag, Berlin, Heidelberg (2006)

  25. Stein, F.L., et al.: Size and shape spaces for landmark data in two dimensions. Stat Sci 1(2), 181–222 (1986)

    Google Scholar 

  26. Tayebi, S., Momani, S., Abu Arqub, O.: The cubic b-spline interpolation method for numerical point solutions of conformable boundary value problems. Alex Eng J 61(2), 1519–1528 (2021)

    Article  Google Scholar 

  27. Ueckert, S., Mentré, F.: A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature. Comput Stat Data Anal 111, 203–219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, F., Vemuri, B.C., Rangarajan, A., Eisenschenk, S.J.: Simultaneous nonrigid registration of multiple point sets and atlas construction. IEEE Trans Pattern Anal Machine Intell 30(11), 2011–2022 (2008)

    Article  Google Scholar 

  29. Wang, P., Xu, J., Deng, J., Chen, F.: Adaptive isogeometric analysis using rational pht-splines. Comput Aid Des 43(11), 1438–1448 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for providing us with constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhui Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

This work is partially supported by grants from the National Natural Science Foundation of China (NSFC Nos. 12201292, 61772167, and 11771420), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB110015).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Q., Wang, X. Shape Analysis by Computing Geodesics on a Manifold via Cubic B-splines. Commun. Math. Stat. (2023). https://doi.org/10.1007/s40304-023-00373-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40304-023-00373-3

Keywords

Mathematics Subject Classification

Navigation