Skip to main content

Advertisement

Log in

Brain Neuroplasticity Related to Lateral Ankle Ligamentous Injuries: A Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Lateral ankle sprains are the most common ankle injuries in sports and have the highest recurrence rates. Almost half of the patients experiencing lateral ankle sprains develop chronic ankle instability. Patients with chronic ankle instability experience persistent ankle dysfunctions and detrimental long-term sequelae. Changes at the brain level are put forward to explain these undesirable consequences and high recurrence rates partially. However, an overview of possible brain adaptations related to lateral ankle sprains and chronic ankle instability is currently lacking.

Objective

The primary purpose of this systematic review is to provide a comprehensive overview of the literature on structural and functional brain adaptations related to lateral ankle sprains and in patients with chronic ankle instability.

Methods

PubMed, Web of Science, Scopus, Embase, EBSCO—SPORTDiscus and Cochrane Central Register of Controlled Trials were systematically searched until 14 December, 2022. Meta-analyses, systematic reviews and narrative reviews were excluded. Included studies investigated functional or structural brain adaptations in patients who experienced a lateral ankle sprain or with chronic ankle instability and who were at least 18 years of age. Lateral ankle sprains and chronic ankle instability were defined following the recommendation of the International Ankle Consortium. Three authors independently extracted the data. They extracted the authors’ name, publication year, study design, inclusion criteria, participant characteristics, the sample size of the intervention and control groups, methods of neuroplasticity testing, as well as all means and standard deviations of primary and secondary neuroplasticity outcomes from each study. Data reported on copers were considered as part of the control group. The quality assessment tool for observational and cross-sectional studies was used for the risk of bias assessment. This study is registered on PROSPERO, number CRD42021281956.

Results

Twenty articles were included, of which only one investigated individuals who experienced a lateral ankle sprain. In all studies combined, 356 patients with chronic ankle instability, 10 who experienced a lateral ankle sprain and 46 copers were included. White matter microstructure changes in the cerebellum have been related to lateral ankle sprains. Fifteen studies reported functional brain adaptations in patients with chronic ankle instability, and five articles found structural brain outcomes. Alterations in the sensorimotor network (precentral gyrus and supplementary motor area, postcentral gyrus and middle frontal gyrus) and dorsal anterior cingulate cortex were mainly found in patients with chronic ankle instability.

Discussion

The included studies demonstrated structural and functional brain adaptations related to lateral ankle sprains and chronic ankle instability compared to healthy individuals or copers. These adaptations correlate with clinical outcomes (e.g. patients’ self-reported function and different clinical assessments) and might contribute to the persisting dysfunctions, increased re-injury risk and long-term sequelae seen in these patients. Thus, rehabilitation programmes should integrate sensorimotor and motor control strategies to cope with neuroplasticity related to ligamentous ankle injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fong DT-PF, Hong Y, Chan L-K, Yung PS-H, Chan K-M. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007;37(1):73–94.

    Article  PubMed  Google Scholar 

  2. Herzog MM, Kerr ZY, Marshall SW, Wikstrom EA. Epidemiology of ankle sprains and chronic ankle instability. J Athl Train. 2019;54(6):603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kemler E, van de Port I, Valkenberg H, Hoes AW, Backx FJ. Ankle injuries in the Netherlands: trends over 10–25 years. Scand J Med Sci Sports. 2015;25(3):331–7.

    Article  CAS  PubMed  Google Scholar 

  4. Hertel J. Functional instability following LAS. Sports Med. 2000;37(1):61–7.

    Google Scholar 

  5. Delahunt E, Bleakley CM, Bossard DS, Caulfield BM, Docherty CL, Doherty C, et al. Clinical assessment of acute lateral ankle sprain injuries (ROAST): 2019 consensus statement and recommendations of the International Ankle Consortium. Br J Sports Med. 2018;52(20):1304–10.

    Article  PubMed  Google Scholar 

  6. Dejong AF, Koldenhoven RM, Hertel J. Proximal adaptations in chronic ankle instability: systematic review and meta-analysis. Med Sci Sports Exerc. 2020;52(7):1563–75.

    Article  PubMed  Google Scholar 

  7. Thompson C, Schabrun S, Romero R, Bialocerkowski A, van Dieen J, Marshall P. Factors contributing to chronic ankle instability: a systematic review and meta-analysis of systematic reviews. Sports Med. 2018;48(1):189–205.

    Article  PubMed  Google Scholar 

  8. McKay CD, Goldie PA, Payne WR, Oakes BW. Ankle Injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001;35(2):103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Dijk CN, Vuurberg G. There is no such thing as a simple ankle sprain: clinical commentary on the 2016 International Ankle Consortium position statement. Br J Sports Med. 2017;51(6):485–6.

    Article  PubMed  Google Scholar 

  10. Kaminski TW, Hertel J, Amendola N, Docherty CL, Dolan MG, Hopkins JT, et al. National Athletic Trainers’ Association position statement: conservative management and prevention of ankle sprains in athletes. J Athl Train. 2013;48(4):528–45.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gribble PA, Bleakley CM, Caulfield BM, Docherty CL, Fourchet F, Fong DT, et al. 2016 consensus statement of the International Ankle Consortium: prevalence, impact and long-term consequences of lateral ankle sprains. Br J Sports Med. 2016;50(24):1493–510.

    Article  PubMed  Google Scholar 

  12. Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Recovery from a first-time lateral ankle sprain and the predictors of chronic ankle instability: a prospective cohort analysis. Am J Sports Med. 2016;44(4):995–1003.

    Article  PubMed  Google Scholar 

  13. Terada M, Kosik KB, McCann RS, Gribble PA. Diaphragm contractility in individuals with chronic ankle instability. Med Sci Sports Exerc. 2016;48(10):2040–5.

    Article  PubMed  Google Scholar 

  14. Suttmiller AMB, McCann RS. Neural excitability of lower extremity musculature in individuals with and without chronic ankle instability: a systematic review and meta-analysis. J Electromyogr Kinesiol. 2020;53: 102436.

    Article  PubMed  Google Scholar 

  15. Miklovic TM, Donovan L, Protzuk OA, Kang MS, Feger MA. Acute lateral ankle sprain to chronic ankle instability: a pathway of dysfunction. Phys Sportsmed. 2018;46(1):116–22.

    Article  PubMed  Google Scholar 

  16. Khalaj N, Vicenzino B, Heales LJ, Smith MD. Is chronic ankle instability associated with impaired muscle strength? Ankle, knee and hip muscle strength in individuals with chronic ankle instability: a systematic review with meta-analysis. Br J Sports Med. 2020;54(14):839–471.

    Article  PubMed  Google Scholar 

  17. Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364–75.

    PubMed  PubMed Central  Google Scholar 

  18. Xue X, Ma T, Li Q, Song Y, Hua Y. Chronic ankle instability is associated with proprioception deficits: a systematic review and meta-analysis. J Sport Health Sci. 2021;10(2):182–91.

    Article  PubMed  Google Scholar 

  19. Valderrabano V, Hintermann B, Horisberger M, Fung TS. Ligamentous posttraumatic ankle osteoarthritis. Am J Sports Med. 2006;34(4):612–20.

    Article  PubMed  Google Scholar 

  20. Hirose K, Murakami G, Minowa T, Kura H, Yamashita T. Lateral ligament injury of the ankle and associated articular cartilage degeneration in the talocrural joint: anatomic study using elderly cadavers. J Orthop Sci. 2004;9(1):37–43.

    Article  PubMed  Google Scholar 

  21. Golditz T, Steib S, Pfeifer K, Uder M, Gelse K, Janka R, et al. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes. Osteoarthr Cartil. 2014;22(10):1377–85.

    Article  CAS  Google Scholar 

  22. Hupperets MD, Verhagen EA, Heymans MW, Bosmans JE, van Tulder MW, van Mechelen W. Potential savings of a program to prevent ankle sprain recurrence: economic evaluation of a randomized controlled trial. Am J Sports Med. 2010;38(11):2194–200.

    Article  PubMed  Google Scholar 

  23. Tassignon B, Verschueren J, Delahunt E, Smith M, Vicenzino B, Verhagen E, et al. Criteria-based return to sport decision-making following lateral ankle sprain injury: a systematic review and narrative synthesis. Sports Med. 2019;49(4):601–19.

    Article  PubMed  Google Scholar 

  24. Smith MD, Vicenzino B, Bahr R, Bandholm T, Cooke R, Mendonca LM, et al. Return to sport decisions after an acute lateral ankle sprain injury: introducing the PAASS framework-an international multidisciplinary consensus. Br J Sports Med. 2021;55(22):1270–610.

    Article  PubMed  Google Scholar 

  25. Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):1271–88.

    Article  PubMed  Google Scholar 

  26. Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve. 2015;51(3):327–32.

    Article  PubMed  Google Scholar 

  27. Pietrosimone BG, McLeod MM, Lepley AS. A theoretical framework for understanding neuromuscular response to lower extremity joint injury. Sports Health. 2012;4(1):31–51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim KM, Kim JS, Cruz-Díaz D, Ryu S, Kang M, Taube W. Changes in spinal and corticospinal excitability in patients with chronic ankle instability: a systematic review with meta-analysis. J Clin Med. 2019;8(7):1037.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sharma N, Classen J, Cohen LG. Neural plasticity and its contribution to functional recovery. Handb Clin Neurol. 2013;110:3–12. https://doi.org/10.1016/B978-0-444-52901-5.00001-0.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shitara H, Ichinose T, Shimoyama D, Sasaki T, Hamano N, Kamiyama M, et al. Neuroplasticity caused by peripheral proprioceptive deficits. Med Sci Sports Exerc. 2022;54(1):28–37.

    Article  PubMed  Google Scholar 

  31. Neto T, Sayer T, Theisen D, Mierau A. Functional brain plasticity associated with ACL injury: a scoping review of current evidence. Neural Plast. 2019;2019:3480512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kakavas G, Malliaropoulos N, Pruna R, Traster D, Bikos G, Maffulli N. Neuroplasticity and anterior cruciate ligament injury. Indian J Orthop. 2020;54(3):275–80.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sports. 2008;18(4):473–84.

    Article  CAS  PubMed  Google Scholar 

  34. Baumeister J, Reinecke K, Schubert M, Weiss M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29(9):1383–910.

    Article  PubMed  Google Scholar 

  35. Kapreli E, Athanasopoulos S, Gliatis J, Papathanasiou M, Peeters R, Strimpakos N, et al. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):2419–26.

    Article  PubMed  Google Scholar 

  36. Lepley AS, Ly MT, Grooms DR, Kinsella-Shaw JM, Lepley LK. Corticospinal tract structure and excitability in patients with anterior cruciate ligament reconstruction: a DTI and TMS study. Neuroimage Clin. 2020;25: 102157.

    Article  PubMed  Google Scholar 

  37. Diekfuss JA, Grooms DR, Yuan W, Dudley J, Barber Foss KD, Thomas S, et al. Does brain functional connectivity contribute to musculoskeletal injury? A preliminary prospective analysis of a neural biomarker of ACL injury risk. J Sci Med Sport. 2019;22(2):169–74.

    Article  PubMed  Google Scholar 

  38. Gokeler A, Neuhaus D, Benjaminse A, Grooms DR, Baumeister J. Principles of motor learning to support neuroplasticity after ACL injury: implications for optimizing performance and reducing risk of second ACL injury. Sports Med. 2019;49(6):853–65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rio E, Kidgell D, Moseley GL, Gaida J, Docking S, Purdam C, et al. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review. Br J Sports Med. 2016;50(4):209–15.

    Article  PubMed  Google Scholar 

  40. Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381–93.

    Article  PubMed  Google Scholar 

  41. Grooms DR, Kiefer AW, Riley MA, Ellis JD, Thomas S, Kitchen K, et al. Brain-behavior mechanisms for the transfer of neuromuscular training adaptions to simulated sport: initial findings from the Train the Brain Project. J Sport Rehabil. 2018;27(5):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ardern CL, Buttner F, Andrade R, Weir A, Ashe MC, Holden S, et al. Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br J Sports Med. 2022;56(4):175–95.

    Article  PubMed  Google Scholar 

  43. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  44. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 Guideline Statement. J Clin Epidemiol. 2016;75:40–6.

    Article  PubMed  Google Scholar 

  45. Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, et al. PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst Rev. 2021;10(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gribble PA, Delahunt E, Bleakley CM, Caulfield B, Docherty CL, Fong DT, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Athl Train. 2014;49(1):121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. NIH. Study quality assessment tools; 2013. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 30 Mar 2023.

  48. McLeod MM, Gribble PA, Pietrosimone BG. Chronic ankle instability and neural excitability of the lower extremity. J Athl Train. 2015;50(8):847–53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Harkey M, McLeod MM, Terada M, Gribble PA, Pietrosimone BG. Quadratic association between corticomotor and spinal-reflexive excitability and self-reported disability in participants with chronic ankle instability. J Sport Rehabil. 2016;25(2):137–45.

    Article  PubMed  Google Scholar 

  50. Terada M, Bowker S, Thomas AC, Pietrosimone B, Hiller CE, Gribble PA. Corticospinal excitability and inhibition of the soleus in individuals with chronic ankle instability. PM R. 2016;8(11):1090–6.

    Article  PubMed  Google Scholar 

  51. Kosik KB, Terada M, McCann RS, Drinkard CP, Gribble PA. Association between corticospinal inhibition and active dorsiflexion range of motion in patients with chronic ankle instability. Transl Sports Med. 2021;4(3):395–400.

    Article  Google Scholar 

  52. Terada M, Kosik KB, McCann RS, Drinkard C, Gribble PA. Corticospinal activity during a single-leg stance in people with chronic ankle instability. J Sport Health Sci. 2022;11(1):58–66.

    Article  PubMed  Google Scholar 

  53. Pietrosimone BG, Gribble PA. Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J Athl Train. 2012;47(6):621–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kosik KB, Terada M, Drinkard CP, McCann RS, Gribble PA. Potential corticomotor plasticity in those with and without chronic ankle instability. Med Sci Sports Exerc. 2017;49(1):141–9.

    Article  PubMed  Google Scholar 

  55. Nanbancha A, Tretriluxana J, Limroongreungrat W, Sinsurin K. Decreased supraspinal control and neuromuscular function controlling the ankle joint in athletes with chronic ankle instability. Eur J Appl Physiol. 2019;119(9):2041–52.

    Article  PubMed  Google Scholar 

  56. Needle AR. Brain regulation of muscle tone and laxity differs in functionally unstable ankles. J Sport Rehabil. 2013;22:202–11.

    Article  PubMed  Google Scholar 

  57. Thompson T, Suttmiller AMB, Ringle B, McCann RS. Corticomotor excitability of the gluteus maximus in individuals with chronic ankle instability: a pilot study. Transl Sports Med. 2020;4(1):65–71.

    Article  Google Scholar 

  58. Needle AR, Swanik CB, Schubert M, Reinecke K, Farquhar WB, Higginson JS, et al. Decoupling of laxity and cortical activation in functionally unstable ankles during joint loading. Eur J Appl Physiol. 2014;114(10):2129–38.

    Article  PubMed  Google Scholar 

  59. Zhang X, Su W, Ruan B, Zang Y. Alterations in cortical activation among soccer athletes with chronic ankle instability during drop-jump landing: a preliminary study. Brain Sci. 2022;12(5):664.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rosen AB, Yentes JM, McGrath ML, Maerlender AC, Myers SA, Mukherjee M. Alterations in cortical activation among individuals with chronic ankle instability during single-limb postural control. J Athl Train. 2019;54(6):718–26.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Terada M, Johnson N, Kosik K, Gribble P. Quantifying brain white matter microstructure of people with lateral ankle sprain. Med Sci Sports Exerc. 2019;51(4):640–61.

    Article  PubMed  Google Scholar 

  62. Xue X, Zhang Y, Li S, Xu H, Chen S, Hua Y. Lateral ankle instability-induced neuroplasticity in brain grey matter: a voxel-based morphometry MRI study. J Sci Med Sport. 2021. https://doi.org/10.1016/j.jsams.2021.06.013.

    Article  PubMed  Google Scholar 

  63. Xue X, Li Q, Wang Y, Lu R, Han J, Zhang H, et al. Impaired corticospinal tract in chronic ankle instability: a diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) study at 7.0 Tesla. J Sci Med Sport. 2022;25(8):649–54.

    Article  PubMed  Google Scholar 

  64. Xue X, Li S, Li H, Li Q, Hua Y. Deactivation of the dorsal anterior cingulate cortex indicated low postoperative sports levels in presurgical patients with chronic ankle instability. BMC Sports Sci Med Rehabil. 2021;13(1):121.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xie HM, Xing ZT, Chen ZY, Zhang XT, Qiu XJ, Jia ZS, et al. Regional brain atrophy in patients with chronic ankle instability: a voxel-based morphometry study. Front Neurosci. 2022;16: 984841.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xue X, Lu R, Zang DI, Li H, Zhang H, Xu H, et al. Low regional homogeneity of intrinsic cerebellar activity in ankle instability: an externally validated rs-fMRI study. Med Sci Sports Exerc. 2022;54(12):2037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shen Y, Wang W, Wang Y, Yang L, Yuan C, Yang Y, et al. Not only in sensorimotor network: local and distant cerebral inherent activity of chronic ankle instability: a resting-state fMRI study. Front Neurosci. 2022;16: 835538.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Needle AR, Palmer JA, Kesar TM, Binder-Macleod SA, Swanik CB. Brain regulation of muscle tone in healthy and functionally unstable ankles. J Sport Rehabil. 2013;22(3):202–11.

    Article  PubMed  Google Scholar 

  69. Zhang L, Zhao M, Fu W, Gao X, Shen J, Zhang Z, et al. Epidemiological analysis of trauma patients following the Lushan earthquake. PLoS One. 2014;9(5): e97416.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 2002;15(4):247–62.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.

    Article  CAS  PubMed  Google Scholar 

  72. van Hedel HJ, Murer C, Dietz V, Curt A. The amplitude of lower leg motor evoked potentials is a reliable measure when controlled for torque and motor task. J Neurol. 2007;254(8):1089–98.

    Article  PubMed  Google Scholar 

  73. Luc BA, Lepley AS, Tevald MA, Gribble PA, White DB, Pietrosimone BG. Reliability of corticomotor excitability in leg and thigh musculature at 14 and 28 days. J Sport Rehabil. 2014;23(4):330–8.

    Article  PubMed  Google Scholar 

  74. Triggs WJ, Cros D, Macdonell RA, Chiappa KH, Fang J, Day BJ. Cortical and spinal motor excitability during the transcranial magnetic stimulation silent period in humans. Brain Res. 1993;628:39–48.

    Article  CAS  PubMed  Google Scholar 

  75. Fuhr P, Agostino R, Hallet M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol. 1991;81(4):257–62.

    Article  CAS  PubMed  Google Scholar 

  76. Urbach D, Nebelung W, Weiler HT, Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31(12):1691.

    Article  CAS  PubMed  Google Scholar 

  77. Houston MN, Hoch JM, Hoch MC. College athletes with ankle sprain history exhibit greater fear-avoidance beliefs. J Sport Rehabil. 2018;27(5):419–23.

    Article  PubMed  Google Scholar 

  78. Houston MN, Van Lunen BL, Hoch MC. Health-related quality of life in individuals with chronic ankle instability. J Athl Train. 2014;49(6):758–63.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  80. Nair G, Tanahashi Y, Low HP, Billings-Gagliardi S, Schwartz WJ, Duong TQ. Myelination and long diffusion times alter diffusion-tensor-imaging contrast in myelin-deficient shiverer mice. Neuroimage. 2005;28(1):165–74.

    Article  PubMed  Google Scholar 

  81. Kumar R, Macey PM, Woo MA, Alger JR, Harper RM. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome. Pediatr Res. 2008;64(3):275–80.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ciccarelli O, Behrens TE, Altmann DR, Orrell RW, Howard RS, Johansen-Berg H, et al. Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain. 2006;129(Pt 7):1859–71.

    Article  CAS  PubMed  Google Scholar 

  83. Sun SW, Liang HF, Trinkaus K, Cross AH, Armstrong RC, Song SK. Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med. 2006;55(2):302–10.

    Article  PubMed  Google Scholar 

  84. Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Azuma J, Matsuzaki J, et al. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum. 2013;12(5):645–56.

    Article  PubMed  Google Scholar 

  85. Song S-K, Sun S-W, Ju W-K, Lin S-J, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003;20(3):1714–22.

    Article  PubMed  Google Scholar 

  86. Budde MD, Kim JH, Liang HF, Schmidt RE, Russell JH, Cross AH, et al. Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med. 2007;57(4):688–95.

    Article  PubMed  Google Scholar 

  87. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000–16.

    Article  PubMed  Google Scholar 

  88. Therrien AS, Bastian AJ. The cerebellum as a movement sensor. Neurosci Lett. 2019;1(688):37–40.

    Article  Google Scholar 

  89. Weiller MJC. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 1998;121:1437–49.

    Article  PubMed  Google Scholar 

  90. Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train. 2019;54(6):572–88.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Delahunt E, Monaghan K, Caulfield B. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint. Am J Sports Med. 2006;34(12):1970–6.

    Article  PubMed  Google Scholar 

  92. Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Sweeney K, et al. Lower limb interjoint postural coordination one year after first-time lateral ankle sprain. Med Sci Sports Exerc. 2015;47(11):2398–405.

    Article  PubMed  Google Scholar 

  93. Terada M, Ball LM, Pietrosimone BG, Gribble PA. Altered visual focus on sensorimotor control in people with chronic ankle instability. J Sports Sci. 2016;34(2):171–80.

    Article  PubMed  Google Scholar 

  94. Terada M, Bowker S, Thomas AC, Pietrosimone B, Hiller CE, Rice MS, et al. Alterations in stride-to-stride variability during walking in individuals with chronic ankle instability. Hum Mov Sci. 2015;40:154–62.

    Article  PubMed  Google Scholar 

  95. Terada M, Pietrosimone BG, Gribble PA. Alterations in neuromuscular control at the knee in individuals with chronic ankle instability. J Athl Train. 2014;49(5):599–607.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Van Deun S, Staes FF, Stappaerts KH, Janssens L, Levin O, Peers KK. Relationship of chronic ankle instability to muscle activation patterns during the transition from double-leg to single-leg stance. Am J Sports Med. 2007;35(2):274–81.

    Article  PubMed  Google Scholar 

  97. Theisen A, Day J. Chronic ankle instability leads to lower extremity kinematic changes during landing tasks: a systematic review. Int J Exerc Sci. 2019;12(1):24–33.

    PubMed  PubMed Central  Google Scholar 

  98. Wikstrom EA, Bishop MD, Inamdar AD, Hass CJ. Gait termination control strategies are altered in chronic ankle instability subjects. Med Sci Sports Exerc. 2010;42(1):197–205.

    Article  PubMed  Google Scholar 

  99. Wikstrom EA, Brown CN. Minimum reporting standards for copers in chronic ankle instability research. Sports Med. 2014;44(2):251–68.

    Article  PubMed  Google Scholar 

  100. Draganova R, Konietschke F, Steiner KM, Elangovan N, Gumus M, Goricke SM, et al. Motor training-related brain reorganization in patients with cerebellar degeneration. Hum Brain Mapp. 2022;43(5):1611–29.

    Article  PubMed  Google Scholar 

  101. Machan T, Krupps K. The neuroplastic adaptation trident model: a suggested novel framework for ACL rehabilitation. Int J Sports Phys Ther. 2021;16(3):896–991.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Johnson BP, Cohen LG. Reward and plasticity: implications for neurorehabilitation. Handb Clin Neurol. 2022;184:331–40.

    Article  PubMed  Google Scholar 

  103. Czyz SH, Marusiak J, Klobusiakova P, Sajdlova Z, Rektorova I. Neuroplasticity in motor learning under variable and constant practice conditions: protocol of randomized controlled trial. Front Hum Neurosci. 2022;16: 773730.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dordevic M, Taubert M, Muller P, Riemer M, Kaufmann J, Hokelmann A, et al. Which effects on neuroanatomy and path-integration survive? Results of a randomized controlled study on intensive balance training. Brain Sci. 2020;10(4):210. https://doi.org/10.3390/brainsci10040210.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ardern CL, Osterberg A, Tagesson S, Gauffin H, Webster KE, Kvist J. The impact of psychological readiness to return to sport and recreational activities after anterior cruciate ligament reconstruction. Br J Sports Med. 2014;48(22):1613–91.

    Article  PubMed  Google Scholar 

  106. Christino MA, Fantry AJ, Vopat BG. Psychological aspects of recovery following anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2015;23(8):501–9.

    Article  PubMed  Google Scholar 

  107. Bauer M, Feeley BT, Wawrzyniak JR, Pinkowsky G, Gallo RA. Factors affecting return to play after anterior cruciate ligament reconstruction: a review of the current literature. Phys Sportsmed. 2014;42(4):71–91.

    Article  PubMed  Google Scholar 

  108. Hsu CJ, Meierbachtol A, George SZ, Chmielewski TL. Fear of reinjury in athletes. Sports Health. 2017;9(2):162–7.

    Article  PubMed  Google Scholar 

  109. Picot B, Hardy A, Terrier R, Tassignon B, Lopes R, Fourchet F. Which functional tests and self-reported questionnaires can help clinicians make valid return to sport decisions in patients with chronic ankle instability? A narrative review and expert opinion. Front Sports Active Living. 2022;4: 902886.

    Article  Google Scholar 

  110. Picot B, Remy-Neris O, Forestier N. Proprioceptive postural control strategies differ among non-injured athletes. Neurosci Lett. 2022;19:769. https://doi.org/10.1016/j.neulet.2021.136366.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from the Luxembourg Institute of Research in Orthopedics, Sports Medicine and Science (LIROMS) and the Strategic Research Program Exercise and the Brain in Health & Disease: The Added Value of Human-Centered Robotics (SRP17) who provided insight and expertise that assisted the research. Bart Roelands is a Collen-Francqui research professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Tassignon.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of Interest

Alexandre Maricot, Emilie Dick, Annemiek Walravens, Bert Pluym, Elke Lathouwers, Kevin De Pauw, Jo Verschueren, Bart Roelands, Romain Meeusen and Bruno Tassignon have no conflicts of interest that are directly relevant to the content of this review.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

Not applicable.

Author Contributions

AM substantially contributed to the conception and design of the work, as well as to the acquisition, analysis and interpretation of data for the work. BT, RM, JV, BR, KDP and EL substantially contributed to the conception and design of the work and the interpretation of data for the work. AW, ED and BP substantially contributed to the acquisition and analysis of data for the work. All authors revised the work critically for important intellectual content and gave final approval of the final version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maricot, A., Dick, E., Walravens, A. et al. Brain Neuroplasticity Related to Lateral Ankle Ligamentous Injuries: A Systematic Review. Sports Med 53, 1423–1443 (2023). https://doi.org/10.1007/s40279-023-01834-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01834-z

Navigation