Skip to main content
Log in

Muscular Fitness and Cardiometabolic Variables in Children and Adolescents: A Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The importance of muscular fitness (MF) in the performance of activities of daily living is unequivocal. Additionally, emerging evidence has shown MF can reduce cardiometabolic risk in children and adolescents.

Objectives

The purpose of this study was to examine and summarize the evidence regarding the relationship between MF phenotypes (i.e., maximum muscular strength/power, muscular endurance, and maximum muscular strength/power/endurance) and cardiometabolic variables (obesity, blood pressure, lipids, glucose homeostasis, inflammatory markers, and clustered cardiometabolic variables) in children and adolescents.

Design

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and was registered with PROSPERO, number CRD42020179273.

Data Sources

A systematic review was performed on five databases (PubMed, EMBASE, SciELO, Scopus, and Web of Knowledge) from database inception to May 2020, with complementary searches in reference lists.

Eligibility Criteria for Selecting Studies

Eligibility criteria included (1) a study sample of youth aged ≤ 19 years, (2) an assessment of MF with individual or clustered cardiometabolic variables derived from adjusted models (regardless of test/measurement adopted or direction of reported association), and (3) a report of the association between both, using observational studies. Only original articles published in peer-reviewed journals in English, Portuguese, and Spanish languages were considered. The quality of the included studies was assessed by using the National Heart, Lung, and Blood Institute checklist. The percentage of results reporting a statistically significant inverse association between each MF phenotype and cardiometabolic variables was calculated.

Results

Of the 23,686 articles initially identified, 96 were included (77 cross-sectional and 19 longitudinal), with data from children and adolescents from 35 countries. The score for the quality of evidence ranged from 0.33 to 0.92 (1.00 maximum). MF assessed by maximum muscular strength/power was inversely associated with lower obesity (64/113 total results (56.6%)) and reduction in clustered cardiometabolic risk (28/48 total results (58.3%)). When assessed by muscular endurance, an inverse association with obesity (30/44 total results (68.1%)) and cardiometabolic risk (5/8 total results (62.5%)) was identified. Most of the results for the relationship between MF phenotypes with blood pressure, lipids, glucose homeostasis, and inflammatory markers indicated a paucity of evidence for these interrelationships (percentage of results below 50.0%).

Conclusion

MF assessed by maximum muscular strength/power or muscular endurance is potentially associated with lower obesity and lower risk related to clustered cardiometabolic variables in children and adolescents. There is limited support for an inverse association between MF with blood pressure, lipids, glucose homeostasis biomarkers, and inflammatory markers in children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052.

    Article  PubMed  PubMed Central  Google Scholar 

  2. National Heart Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56. https://doi.org/10.1542/peds.2009-2107c.

    Article  Google Scholar 

  3. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;74(10):e177–232. https://doi.org/10.1161/CIR.0000000000000678.

    Article  Google Scholar 

  4. Leiter LA, Fitchett DH, Gilbert RE, Gupta M, Mancini GJ, McFarlane PA, et al. Cardiometabolic risk in Canada: a detailed analysis and position paper by the cardiometabolic risk working group. Can J Cardiol. 2011;27(2):e1–33. https://doi.org/10.1016/j.cjca.2010.12.054.

    Article  PubMed  Google Scholar 

  5. Eckel RH, Cornier MAJB. Update on the NCEP ATP-III emerging cardiometabolic risk factors. BMC Med. 2014;12(1):115. https://doi.org/10.1186/1741-7015-12-115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23. https://doi.org/10.1007/s40279-014-0196-4.

    Article  PubMed  Google Scholar 

  7. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Baltimore: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  8. Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):1–11. https://doi.org/10.1038/sj.ijo.0803774.

    Article  CAS  Google Scholar 

  9. de Lima TR, Martins PC, Guerra PH, Silva DAS. Muscular fitness and cardiovascular risk factors in children and adolescents: a systematic review. J Strength Cond Res. 2020;34(8):2394–406. https://doi.org/10.1519/jsc.0000000000002840.

    Article  Google Scholar 

  10. Grontved A, Ried-Larsen M, Ekelund U, Froberg K, Brage S, Andersen LB. Independent and combined association of muscle strength and cardiorespiratory fitness in youth with insulin resistance and beta-cell function in young adulthood: the European Youth Heart Study. Diabetes Care. 2013;36(9):2575–81. https://doi.org/10.2337/dc12-2252.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grøntved A, Ried-Larsen M, Møller NC, Kristensen PL, Froberg K, Brage S, et al. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br J Sports Med. 2015;49(2):90–4. https://doi.org/10.1136/bjsports-2012-091907.

    Article  PubMed  Google Scholar 

  12. Demmer DL, Beilin LJ, Hands B, Burrows S, Cox KL, Straker LM, et al. Effects of muscle strength and endurance on blood pressure and related cardiometabolic risk factors from childhood to adolescence. J Hypertens. 2016;34(12):2365–75. https://doi.org/10.1097/hjh.0000000000001116.

    Article  CAS  PubMed  Google Scholar 

  13. Fraser BJ, Huynh QL, Schmidt MD, Dwyer T, Venn AJ, Magnussen CG. Childhood muscular fitness phenotypes and adult metabolic syndrome. Med Sci Sports Exerc. 2016;48(9):1715–22. https://doi.org/10.1249/mss.0000000000000955.

    Article  CAS  PubMed  Google Scholar 

  14. Castro-Piñero J, Perez-Bey A, Cuenca-Garcia M, Cabanas-Sanchez V, Gómez-Martínez S, Veiga OL, et al. Muscle fitness cut points for early assessment of cardiovascular risk in children and adolescents. J Pediatr. 2019;206:134-41.e3. https://doi.org/10.1016/j.jpeds.2018.10.026.

    Article  PubMed  Google Scholar 

  15. Tarp J, Bugge A, Moller NC, Klakk H, Rexen CT, Grontved A, et al. Muscle fitness changes during childhood associates with improvements in cardiometabolic risk factors: a prospective study. J Phys Act Health. 2019;16(2):108–15. https://doi.org/10.1123/jpah.2017-0678.

    Article  PubMed  Google Scholar 

  16. Hasselstrom H, Hansen SE, Froberg K, Andersen LB. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23(Suppl 1):S27-31. https://doi.org/10.1055/s-2002-28458.

    Article  PubMed  Google Scholar 

  17. Benson A, Torode ME, Singh MF. The effect of high-intensity progressive resistance training on adiposity in children: a randomized controlled trial. Int J Obes. 2008. https://doi.org/10.1038/ijo.2008.5.

    Article  Google Scholar 

  18. Cooper R, Hardy R, Bann D, Sayer AA, Ward KA, Adams JE, et al. Body mass index from age 15 years onwards and muscle mass, strength, and quality in early old age: findings from the MRC national survey of health and development. J Gerontol A Biol Sci Med Sci. 2014;69(10):1253–9. https://doi.org/10.1093/gerona/glu039.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zaqout M, Michels N, Bammann K, Ahrens W, Sprengeler O, Molnar D, et al. Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study. Int J Obes. 2016;40(7):1119–25. https://doi.org/10.1038/ijo.2016.22.

    Article  CAS  Google Scholar 

  20. Heroux M, Onywera V, Tremblay MS, Adamo KB, Lopez Taylor J, Jauregui Ulloa E, et al. The relation between aerobic fitness, muscular fitness, and obesity in children from three countries at different stages of the physical activity transition. ISRN Obes. 2013;2013:e.1-10. https://doi.org/10.1155/2013/134835.

    Article  Google Scholar 

  21. Crump C, Sundquist J, Winkleby MA, Sundquist K. Aerobic fitness, muscular strength and obesity in relation to risk of heart failure. Heart. 2017;103(22):1780–7. https://doi.org/10.1136/heartjnl-2016-310716.

    Article  PubMed  Google Scholar 

  22. Castro-Piñero J, Artero EG, España-Romero V, Ortega FB, Sjöström M, Suni J, et al. Criterion-related validity of field-based fitness tests in youth: a systematic review. Br J Sports Med. 2010;44(13):934–43. https://doi.org/10.1136/bjsm.2009.058321.

    Article  PubMed  Google Scholar 

  23. Jaric S. Muscle strength testing. Sports Med. 2002;32(10):615–31. https://doi.org/10.2165/00007256-200232100-00002.

    Article  PubMed  Google Scholar 

  24. Croix MDS. Advances in paediatric strength assessment: changing our perspective on strength development. J Sports Sci Med. 2007;6(3):292–304.

    PubMed Central  Google Scholar 

  25. Magnussen CG, Schmidt MD, Dwyer T, Venn A. Muscular fitness and clustered cardiovascular disease risk in Australian youth. Eur J Appl Physiol. 2012;112(8):3167–71. https://doi.org/10.1007/s00421-011-2286-4.

    Article  PubMed  Google Scholar 

  26. Barker AR, Gracia-Marco L, Ruiz JR, Castillo MJ, Aparicio-Ugarriza R, González-Gross M, et al. Physical activity, sedentary time, TV viewing, physical fitness and cardiovascular disease risk in adolescents: the HELENA study. Int J Cardiol. 2018;254:303–9. https://doi.org/10.1016/j.ijcard.2017.11.080.

    Article  PubMed  Google Scholar 

  27. Blakeley CE, Van Rompay MI, Schultz NS, Sacheck JM. Relationship between muscle strength and dyslipidemia, serum 25(OH)D, and weight status among diverse schoolchildren: a cross-sectional analysis. BMC Pediatr. 2018;18(1):23. https://doi.org/10.1186/s12887-018-0998-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palacio-Agüero A, Díaz-Torrente X, Dourado DQS. Relative handgrip strength, nutritional status and abdominal obesity in Chilean adolescents. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0234316.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dong B, Wang Z, Arnold L, Song Y, Wang HJ, Ma J. The association between blood pressure and grip strength in adolescents: Does body mass index matter. Hypertens Res. 2016;39(12):919–25. https://doi.org/10.1038/hr.2016.84.

    Article  PubMed  Google Scholar 

  30. Cohen DD, Gomez-Arbelaez D, Camacho PA, Pinzon S, Hormiga C, Trejos-Suarez J, et al. Low muscle strength is associated with metabolic risk factors in Colombian children: the ACFIES study. PLoS ONE. 2014;9(4): e93150. https://doi.org/10.1371/journal.pone.0093150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen DD, López-Jaramillo P, Fernández-Santos JR, Castro-Piñero J, Sandercock GRH. Muscle strength is associated with lower diastolic blood pressure in schoolchildren. Prev Med. 2017;95:1–6. https://doi.org/10.1016/j.ypmed.2016.11.006.

    Article  CAS  PubMed  Google Scholar 

  32. Fraser BJ, Blizzard L, Schmidt MD, Dwyer T, Venn AJ, Magnussen CG. The association between muscular power from childhood to adulthood and adult measures of glucose homeostasis. Scand J Med Sci Sports. 2019;29(12):1909–16. https://doi.org/10.1111/sms.13529.

    Article  PubMed  Google Scholar 

  33. Peterson MD, Saltarelli WA, Visich PS, Gordon PM. Strength capacity and cardiometabolic risk clustering in adolescents. Pediatrics. 2014;133(4):e896-903. https://doi.org/10.1542/peds.2013-3169.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Henriksson P, Leppänen MH, Henriksson H, Delisle Nyström C, Cadenas-Sanchez C, Ek A, et al. Physical fitness in relation to later body composition in pre-school children. J Sci Med Sport. 2019;22(5):574–9. https://doi.org/10.1016/j.jsams.2018.11.024.

    Article  PubMed  Google Scholar 

  35. Kim J, Must A, Fitzmaurice GM, Gillman MW, Chomitz V, Kramer E, et al. Relationship of physical fitness to prevalence and incidence of overweight among schoolchildren. Obes Res. 2005;13(7):1246–54. https://doi.org/10.1038/oby.2005.148.

    Article  PubMed  Google Scholar 

  36. Hruby A, Chomitz VR, Arsenault LN, Must A, Economos CD, McGowan RJ, et al. Predicting maintenance or achievement of healthy weight in children: the impact of changes in physical fitness. Obesity. 2012;20(8):1710–7. https://doi.org/10.1038/oby.2012.13.

    Article  PubMed  Google Scholar 

  37. Butterfield SA, Lehnhard RA, Coladarci T. Age, sex, and body mass index in performance of selected locomotor and fitness tasks by children in grades K-2. Percept Mot Ski. 2002;94(1):80–6. https://doi.org/10.2466/pms.2002.94.1.80.

    Article  Google Scholar 

  38. Tokmakidis SP, Kasambalis A, Christodoulos AD. Fitness levels of Greek primary schoolchildren in relationship to overweight and obesity. Eur J Pediatr. 2006;165(12):867–74. https://doi.org/10.1007/s00431-006-0176-2.

    Article  PubMed  Google Scholar 

  39. Fogelholm M, Stigman S, Huisman T, Metsämuuronen J. Physical fitness in adolescents with normal weight and overweight. Scand J Med Sci Sports. 2008;18(2):162–70. https://doi.org/10.1111/j.1600-0838.2007.00685.x.

    Article  CAS  PubMed  Google Scholar 

  40. Ara I, Sanchez-Villegas A, Vicente-Rodriguez G, Moreno LA, Leiva MT, Martinez-Gonzalez MA, et al. Physical fitness and obesity are associated in a dose-dependent manner in children. Ann Nutr Metab. 2010;57(3–4):251–9. https://doi.org/10.1159/000322577.

    Article  CAS  PubMed  Google Scholar 

  41. Artero EG, Espana-Romero V, Ortega FB, Jimenez-Pavon D, Ruiz JR, Vicente-Rodriguez G, et al. Health-related fitness in adolescents: underweight, and not only overweight, as an influencing factor The AVENA study. Scand J Med Sci Sports. 2010;20(3):418–27. https://doi.org/10.1111/j.1600-0838.2009.00959.x.

    Article  CAS  PubMed  Google Scholar 

  42. Mak KK, Ho SY, Lo WS, Thomas GN, McManus AM, Day JR, et al. Health-related physical fitness and weight status in Hong Kong adolescents. BMC Public Health. 2010;23(10):88. https://doi.org/10.1186/1471-2458-10-88.

    Article  Google Scholar 

  43. Mota J, Vale S, Martins C, Gaya A, Moreira C, Santos R, et al. Influence of muscle fitness test performance on metabolic risk factors among adolescent girls. Diabetol Metab Syndr. 2010;23(2):42. https://doi.org/10.1186/1758-5996-2-42.

    Article  CAS  Google Scholar 

  44. Pino-Ortega J, De la Cruz-Sánchez E, Martínez-Santos R. Health-related fitness in school children: compliance with physical activity recommendations and its relationship with body mass index and diet quality. Arch Latinoam Nutr. 2010;60(4):374–9.

    PubMed  Google Scholar 

  45. Gonzalez-Suarez CB, Grimmer-Somers K. The association of physical activity and physical fitness with pre-adolescent obesity: an observational study in Metromanila, Philippines. J Phys Act Health. 2011;8(6):804–10. https://doi.org/10.1123/jpah.8.6.804.

    Article  PubMed  Google Scholar 

  46. Joshi P, Bryan C, Howat H. Relationship of body mass index and fitness levels among schoolchildren. J Strength Cond Res. 2012;26(4):1006–14. https://doi.org/10.1519/jsc.0b013e31822dd3ac.

    Article  PubMed  Google Scholar 

  47. Pathare N, Haskvitz EM, Selleck M. Comparison of measures of physical performance among young children who are healthy weight, overweight, or obese. Pediatr Phys Ther. 2013;25(3):291–6. https://doi.org/10.1097/pep.0b013e31829846bd.

    Article  PubMed  Google Scholar 

  48. Cieśla E, Mleczko E, Bergier J, Markowska M, Nowak-Starz G. Health-related physical fitness, BMI, physical activity and time spent at a computer screen in 6 and 7-year-old children from rural areas in Poland. Ann Agric Environ Med. 2014;21(3):617–21. https://doi.org/10.5604/12321966.1120613.

    Article  PubMed  Google Scholar 

  49. Silva DAS, Gonçalves ECA, Grigollo LR, Petroski EL. Factors associated with low levels of lumbar strength in adolescents in Southern Brazil. Revista Paul Pediatr. 2014;32(4):360–6. https://doi.org/10.1016/s2359-3482(15)30071-3.

    Article  Google Scholar 

  50. Casonatto J, Fernandes RA, Batista MB, Cyrino ES, Coelho-e-Silva MJ, de Arruda M, et al. Association between health-related physical fitness and body mass index status in children. J Child Health Care. 2016;20(3):294–303. https://doi.org/10.1177/1367493515598645.

    Article  PubMed  Google Scholar 

  51. Henriksson P, Cadenas-Sanchez C, Leppänen MH, Delisle Nyström C, Ortega FB, Pomeroy J, et al. Associations of fat mass and fat-free mass with physical fitness in 4-year-old children: results from the MINISTOP Trial. Nutrients. 2016;8(8):473. https://doi.org/10.3390/nu8080473.

    Article  PubMed Central  Google Scholar 

  52. Martinez-Tellez B, Sanchez-Delgado G, Cadenas-Sanchez C, Mora-Gonzalez J, Martín-Matillas M, Löf M, et al. Health-related physical fitness is associated with total and central body fat in preschool children aged 3 to 5 years. Pediatr Obes. 2016;11(6):468–74. https://doi.org/10.1038/hr.2016.84.

    Article  CAS  PubMed  Google Scholar 

  53. Pereira TA, Bergmann MLDA, Bergmann GG. Factors associated with low physical fitness in adolescents. Rev Bras Med Esporte. 2016;22(3):176–81. https://doi.org/10.1590/1517-869220162203144162.

    Article  Google Scholar 

  54. Latorre Román P, López DM, Aguayo BB, Fuentes AR, García-Pinillos F, Redondo MM. Handgrip strength is associated with anthropometrics variables and sex in preschool children: a cross sectional study providing reference values. Phys Ther Sport. 2017;26:1–6. https://doi.org/10.1016/j.ptsp.2017.04.002.

    Article  PubMed  Google Scholar 

  55. Nkwana MR, Monyeki KD, Matshipi M, Sekgala MD, Ramoshaba NE, Mashiane TMJ. The relationship between strength measurements and anthropometric indicators (BMI and skinfold thickness) in Ellisras rural adolescents aged 9–15 Years: Ellisras Longitudinal Study. Hum Mov. 2017;18(1):11–8. https://doi.org/10.1515/humo-2017-0003.

    Article  Google Scholar 

  56. Silva DAS, Pelegrini A, de Castro JAC, de Lima TR, de Sousa GR, de Lima Silva JMF, et al. Low handgrip strength levels among adolescents in a city in southern Brazil. J Bodyw Mov Ther. 2017;21(4):884–9. https://doi.org/10.1016/j.jbmt.2017.03.004.

    Article  PubMed  Google Scholar 

  57. Riso EM, Toplaan L, Viira P, Vaiksaar S, Jürimäe J. Physical fitness and physical activity of 6–7-year-old children according to weight status and sports participation. PLoS ONE. 2018;14(6): e0218901. https://doi.org/10.1371/journal.pone.0218901.

    Article  CAS  Google Scholar 

  58. Toriola A, Ajayi-Vincent O, Oyeniyi P, Akindutire I, Adeagbo D, Konwea P, et al. Relationship between body composition and musculoskeletal fitness in Nigerian children. Asian J Sci Res. 2018;11(2):169–76. https://doi.org/10.3923/ajsr.2018.169.176.

    Article  Google Scholar 

  59. Garcia-Hermoso A, Correa-Bautista JE, Olloquequi J, Ramirez-Velez R. Health-related physical fitness and weight status in 13-to 15-year-old Latino adolescents. A pooled analysis. J Pediatr (Rio J). 2019;95(4):435–42. https://doi.org/10.1016/j.jped.2018.04.002.

    Article  Google Scholar 

  60. He HJ, Pan L, Dui JW, Liu F, Jin YM, Ma JG, et al. Muscle fitness and its association with body mass index in children and adolescents aged 7–18 years in China: a cross-sectional study. BMC Pediatr. 2019;19:101. https://doi.org/10.1186/s12887-019-1477-8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lang JJ, Larouche R, Tremblay MS. The association between physical fitness and health in a nationally representative sample of Canadian children and youth aged 6 to 17 years. Health Promot Chronic Dis Prev Can. 2019;39(3):104–11. https://doi.org/10.24095/hpcdp.39.3.02.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weston KL, Pasecinic N, Basterfield L. A preliminary study of physical fitness in 8-to 10-year-old primary school children from north east England in comparison with national and international data. Pediatr Exerc Sci. 2019;31(2):229–37. https://doi.org/10.1123/pes.2018-0135.

    Article  PubMed  Google Scholar 

  63. Fiori F, Bravo G, Parpinel M, Messina G, Malavolta R, Lazzer S. Relationship between body mass index and physical fitness in Italian prepubertal schoolchildren. PLoS ONE. 2020;15(5): e0233362. https://doi.org/10.1371/journal.pone.0233362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu Y, Mei M, Wang H, Yan Q, He G. Association between weight status and physical fitness in chinese mainland children and adolescents: a cross-sectional study. Int J Environ Res Public Health. 2020;17(7):2468. https://doi.org/10.3390/ijerph17072468.

    Article  PubMed Central  Google Scholar 

  65. Janz K, Dawson J, Mahoney L. Increases in physical fitness during childhood improve cardiovascular health during adolescence: the Muscatine Study. Int J Sports Med. 2002;23(S1):15–21. https://doi.org/10.1055/s-2002-28456.

    Article  Google Scholar 

  66. Fraser BJ, Blizzard L, Cleland V, Schmidt MD, Smith KJ, Gall SL, et al. Factors associated with persistently high muscular power from childhood to adulthood. Med Sci Sports Exerc. 2020;52(1):49–55. https://doi.org/10.1249/mss.0000000000002108.

    Article  PubMed  Google Scholar 

  67. Moliner-Urdiales D, Ruiz JR, Vicente-Rodriguez G, Ortega FB, Rey-Lopez JP, España-Romero V, et al. Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: The HELENA study. Br J Sports Med. 2011;45(2):101–8. https://doi.org/10.1136/bjsm.2009.062430.

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Hermoso A, Vegas-Heredia ED, Fernandez-Vergara O, Ceballos-Ceballos R, Andrade-Schnettler R, Arellano-Ruiz P, et al. Independent and combined effects of handgrip strength and adherence to a Mediterranean diet on blood pressure in Chilean children. Nutrition. 2019;60:170–4. https://doi.org/10.1016/j.nut.2018.08.019.

    Article  PubMed  Google Scholar 

  69. Hoekstra T, Boreham CA, Murray LJ, Twisk JW. Associations between aerobic and muscular fitness and cardiovascular disease risk: the northern Ireland young hearts study. J Phys Act Health. 2008;5(6):815–29. https://doi.org/10.1123/jpah.5.6.815.

    Article  PubMed  Google Scholar 

  70. Nunes HEG, Alves CAS, Gonçalves ECA, Silva DAS. What physical fitness component is most closely associated with adolescents’ blood pressure? Percept Mot Ski. 2017;124(6):1107–20. https://doi.org/10.1177/0031512517730414.

    Article  Google Scholar 

  71. Zhang R, Li CW, Liu TT, Zheng LQ, Li SX. Handgrip strength and blood pressure in children and adolescents: evidence from NHANES 2011 to 2014. Am J Hypertens. 2018;31(7):792–6. https://doi.org/10.1093/ajh/hpy032.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li S, Zhang R, Pan G, Zheng L, Li C. Handgrip strength is associated with insulin resistance and glucose metabolism in adolescents: Evidence from National Health and Nutrition Examination Survey 2011 to 2014. Pediatr Diabetes. 2018;19(3):375–80. https://doi.org/10.1111/pedi.12596.

    Article  CAS  PubMed  Google Scholar 

  73. Ruiz JR, Ortega FB, Warnberg J, Moreno LA, Carrero JJ, Gonzalez-Gross M, et al. Inflammatory proteins and muscle strength in adolescents: the Avena study. Arch Pediatr Adolesc Med. 2008;162(5):462–8. https://doi.org/10.1001/archpedi.162.5.462.

    Article  PubMed  Google Scholar 

  74. Martinez-Gomez D, Gomez-Martinez S, Ruiz JR, Diaz LE, Ortega FB, Widhalm K, et al. Objectively-measured and self-reported physical activity and fitness in relation to inflammatory markers in European adolescents: the HELENA Study. Atherosclerosis. 2012;221(1):260–7. https://doi.org/10.1016/j.atherosclerosis.2011.12.032.

    Article  CAS  PubMed  Google Scholar 

  75. Artero EG, Espana-Romero V, Jimenez-Pavon D, Martinez-Gomez D, Warnberg J, Gomez-Martinez S, et al. Muscular fitness, fatness and inflammatory biomarkers in adolescents. Pediatr Obes. 2014;9(5):391–400. https://doi.org/10.1111/j.2047-6310.2013.00186.x.

    Article  CAS  PubMed  Google Scholar 

  76. Rodríguez Valero FJ, Gualteros JA, Torres JA, Umbarila Espinosa LM, Ramírez-Velez R. Association between muscular fitness and physical health status among children and adolescents from bogotá, colombia. Nutr Hosp. 2015;32(4):1559–66. https://doi.org/10.3305/nh.2015.32.4.9310.

    Article  PubMed  Google Scholar 

  77. Diez-Fernandez A, Sanchez-Lopez M, Gulias-Gonzalez R, Notario-Pacheco B, García-Prieto JC, Arias-Palencia N, et al. BMI as a mediator of the relationship between muscular fitness and cardiometabolic risk in children: a mediation analysis. PLoS ONE. 2015;10(1): e0116506. https://doi.org/10.1371/journal.pone.0116506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Agostinis-Sobrinho CA, Ramirez-Velez R, García-Hermoso A, Moreira C, Lopes L, Oliveira-Santos J, et al. Low-grade inflammation and muscular fitness on insulin resistance in adolescents: Results from LabMed Physical Activity Study. Pediatr Diabetes. 2018;19(3):429–35. https://doi.org/10.1111/pedi.12607.

    Article  CAS  PubMed  Google Scholar 

  79. Steene-Johannessen J, Anderssen SA, Kolle E, Andersen LB. Low muscle fitness is associated with metabolic risk in youth. Med Sci Sports Exerc. 2009;41(7):1361–7. https://doi.org/10.1249/mss.0b013e31819aaae5.

    Article  PubMed  Google Scholar 

  80. Fraser BJ, Blizzard L, Schmidt MD, Juonala M, Dwyer T, Venn AJ, et al. Childhood cardiorespiratory fitness, muscular fitness and adult measures of glucose homeostasis. J Sci Med Sport. 2018;21(9):935–40. https://doi.org/10.1016/j.jsams.2018.02.002.

    Article  PubMed  Google Scholar 

  81. Fraser BJ, Blizzard L, Cleland V, Schmidt MD, Smith KJ, Gall SL, et al. Factors associated with muscular fitness phenotypes in Australian children: A cross-sectional study. J Sports Sci. 2020;38(1):38–45. https://doi.org/10.1080/02640414.2019.1679575.

    Article  PubMed  Google Scholar 

  82. Morikawa SY, Fujihara K, Hatta M, Osawa T, Ishizawa M, Yamamoto M, et al. Relationships among cardiorespiratory fitness, muscular fitness, and cardiometabolic risk factors in Japanese adolescents: Niigata screening for and preventing the development of non-communicable disease study-Agano (NICE EVIDENCE Study-Agano) 2. Pediatr Diabetes. 2018;19(4):593–602. https://doi.org/10.1111/pedi.12623.

    Article  CAS  PubMed  Google Scholar 

  83. Malina RM, Reyes MEP, Tan SK, Little BB. Physical fitness of normal, stunted and overweight children 6–13 years in Oaxaca, Mexico. Eur J Clin Nutr. 2011;65(7):826–34. https://doi.org/10.1038/ejcn.2011.44.

    Article  CAS  PubMed  Google Scholar 

  84. Ramirez-Velez R, Tordecilla-Sanders A, Correa-Bautista JE, Peterson MD, Garcia-Hermoso A. Handgrip Strength and ideal cardiovascular health among Colombian Children and Adolescents. J Pediatr. 2016;179:82–9. https://doi.org/10.1016/j.jpeds.2016.08.099.

    Article  PubMed  Google Scholar 

  85. Castro-Piñero J, Laurson KR, Artero EG, Ortega FB, Labayen I, Ruperez AI, et al. Muscle strength field-based tests to identify European adolescents at risk of metabolic syndrome: the HELENA study. J Sci Med Sport. 2019;22(8):929–34. https://doi.org/10.1016/j.jsams.2019.04.008.

    Article  PubMed  Google Scholar 

  86. Lopez-Gil JF, Brazo-Sayavera J, Lucas JLY, Cavichiolli FR. Weight status is related to health-related physical fitness and physical activity but not to sedentary behaviour in children. Int J Environ Res Public Health. 2020;17(12):4518. https://doi.org/10.3390/ijerph17124518.

    Article  PubMed Central  Google Scholar 

  87. Edelson LR, Mathias KC, Fulgoni VL 3rd, Karagounis LG. Screen-based sedentary behavior and associations with functional strength in 6–15 year-old children in the United States. BMC Public Health. 2016;4(16):116. https://doi.org/10.1186/s12889-016-2791-9.

    Article  Google Scholar 

  88. de Lima TR, Martins PC, Torre GL, Mannocci A, Samara Siva K, Santos Silva DA. Association between muscle strength and risk factors for metabolic syndrome in children and adolescents: a systematic review. J Pediatr Endocrinol Metab. 2020. https://doi.org/10.1515/jpem-2020-0135(ahead of print)

  89. García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 2019;49(7):1079–94. https://doi.org/10.1007/s40279-019-01098-6.

    Article  PubMed  Google Scholar 

  90. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34. https://doi.org/10.7326/0003-4819-151-4-200908180-00136.

    Article  PubMed  Google Scholar 

  91. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach (World Health Organization, 2016).

  92. Artero EG, Lee D-C, Lavie CJ, España-Romero V, Sui X, Church TS, et al. Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev. 2012;32(6):351–8. https://doi.org/10.1097/hcr.0b013e3182642688.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Enoka RM. Muscle strength and its development. Sports Med. 1988;6(3):146–68. https://doi.org/10.2165/00007256-198806030-00003.

    Article  CAS  PubMed  Google Scholar 

  94. Keeble C, Baxter P, Barber S, Law G. Participation rates In epidemiology studies and surveys: a review 2005–2007. Internet J Epidemiol. 2016;14(1):1–14. https://doi.org/10.1016/j.annepidem.2007.03.013.

    Article  Google Scholar 

  95. American Association for Public Opinion Research. Standard definitions: final dispositions of case codes and outcome rates for surveys. 9th ed. Lenexa: American Association for Public Opinion Research; 2016.

    Google Scholar 

  96. Morton LM, Cahill J, Hartge P. Reporting participation in epidemiologic studies: a survey of practice. Am J Epidemiol. 2006;163(3):197–203. https://doi.org/10.1093/aje/kwj036.

    Article  PubMed  Google Scholar 

  97. Beunen G, Thomis M. Muscular strength development in children and adolescents. Pediatr Exerc Sci. 2000;12(2):174–97. https://doi.org/10.1123/pes.12.2.174.

    Article  Google Scholar 

  98. Smith JJ, Eather N, Weaver RG, Riley N, Beets MW, Lubans DR. Behavioral correlates of muscular fitness in children and adolescents: a systematic review. Sports Med. 2019;49(6):887–904. https://doi.org/10.1007/s40279-019-01089-7.

    Article  PubMed  Google Scholar 

  99. National Heart Lung Blood Institute. Quality assessment tool for observational cohort and cross-sectional studies. National Institutes of Health, Department of Health Human Services; 2014.

  100. Benson AC, Torode ME, Fiatarone Singh MA. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. Int J Pediatr Obes. 2006;1(4):222–31. https://doi.org/10.1080/17477160600962864.

    Article  PubMed  Google Scholar 

  101. Garcia-Artero E, Ortega FB, Ruiz JR, Mesa JL, Delgado M, Gonzalez-Gross M, et al. Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study). Rev Esp Cardiol. 2007;60(6):581–8. https://doi.org/10.1157/13107114.

    Article  PubMed  Google Scholar 

  102. Artero EG, Ruiz JR, Ortega FB, Espana-Romero V, Vicente-Rodriguez G, Molnar D, et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: the HELENA study. Pediatr Diabetes. 2011;12(8):704–12. https://doi.org/10.1111/j.1399-5448.2011.00769.x.

    Article  PubMed  Google Scholar 

  103. Jiménez-Pavón D, Ortega FB, Artero EG, Labayen I, Vicente-Rodriguez G, Huybrechts I, et al. Physical activity, fitness, and serum leptin concentrations in adolescents. J Pediatr. 2012;160(4):598–603. https://doi.org/10.1016/j.jpeds.2011.09.058.

    Article  CAS  PubMed  Google Scholar 

  104. Jiménez-Pavón D, Ortega FB, Valtueña J, Castro-Piñero J, Gómez-Martínez S, Zaccaria M, et al. Muscular strength and markers of insulin resistance in European adolescents: The HELENA Study. Eur J Appl Physiol. 2012;112(7):2455–65. https://doi.org/10.1007/s00421-011-2216-5.

    Article  CAS  PubMed  Google Scholar 

  105. Martinez-Gomez D, Eisenmann JC, Gomez-Martinez S, Veses A, Romeo J, Veiga OL, et al. Associations of physical activity and fitness with adipocytokines in adolescents: the AFINOS study. Nutr Metab Cardiovasc Dis. 2012;22(3):252–9. https://doi.org/10.1016/j.numecd.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  106. Buchan DS, Boddy LM, Young JD, Cooper SM, Noakes TD, Mahoney C, et al. Relationships between cardiorespiratory and muscular fitness with cardiometabolic risk in adolescents. Res Sports Med. 2015;23(3):227–39. https://doi.org/10.1080/15438627.2015.1040914.

    Article  PubMed  Google Scholar 

  107. Agostinis-Sobrinho C, Santos R, Moreira C, Abreu S, Lopes L, Oliveira-Santos J, et al. Association between serum adiponectin levels and muscular fitness in Portuguese adolescents: LabMed Physical Activity Study. Nutr Metab Cardiovasc Dis. 2016;26(6):517–24. https://doi.org/10.1016/j.numecd.2016.02.011.

    Article  CAS  PubMed  Google Scholar 

  108. Peterson MD, Zhang P, Saltarelli WA, Visich PS, Gordon PM. Low muscle strength thresholds for the detection of cardiometabolic risk in adolescents. Am J Prev Med. 2016;50(5):593–9. https://doi.org/10.1016/j.amepre.2015.09.019.

    Article  PubMed  Google Scholar 

  109. Agostinis-Sobrinho C, Abreu S, Moreira C, Lopes L, García-Hermoso A, Ramírez-Vélez R, et al. Muscular fitness, adherence to the Southern European Atlantic Diet and cardiometabolic risk factors in adolescents. Nutr Metab Cardiovasc Dis. 2017;27(8):695–702. https://doi.org/10.1080/17461391.2017.1394368.

    Article  CAS  PubMed  Google Scholar 

  110. Agostinis-Sobrinho CA, Moreira C, Abreu S, Lopes L, Sardinha LB, Oliveira-Santos J, et al. Muscular fitness and metabolic and inflammatory biomarkers in adolescents: Results from LabMed Physical Activity Study. Scand J Med Sci Sports. 2017;27(12):1873–80. https://doi.org/10.1111/sms.12805.

    Article  CAS  PubMed  Google Scholar 

  111. Gomes TN, dos Santos FK, Katzmarzyk PT, Maia J. Active and strong: physical activity, muscular strength, and metabolic risk in children. Am J Hum Biol. 2017;29(1):e.22904. https://doi.org/10.1002/ajhb.22904.

    Article  Google Scholar 

  112. Rioux BV, Kuwornu P, Sharma A, Tremblay MS, McGavock JM, Senechal M. Association between handgrip muscle strength and cardiometabolic z-score in children 6 to 19 years of age: results from the Canadian Health Measures Survey. Metab Syndr Relat Disord. 2017;15(7):379–84. https://doi.org/10.1089/met.2016.0147.

    Article  CAS  PubMed  Google Scholar 

  113. Delgado-Alfonso A, Perez-Bey A, Conde-Caveda J, Izquierdo-Gomez R, Esteban-Cornejo I, Gomez-Martinez S, et al. Independent and combined associations of physical fitness components with inflammatory biomarkers in children and adolescents. Pediatr Res. 2018;84(5):704–12. https://doi.org/10.1038/s41390-018-0150-5.

    Article  CAS  PubMed  Google Scholar 

  114. Pérez-Bey A, Segura-Jiménez V, Fernández-Santos JDR, Esteban-Cornejo I, Gómez-Martínez S, Veiga OL, et al. The role of adiposity in the association between muscular fitness and cardiovascular disease. J Pediatr. 2018;199:178-85.e4. https://doi.org/10.1016/j.jpeds.2018.03.071.

    Article  CAS  PubMed  Google Scholar 

  115. Agostinis-Sobrinho C, Dias AF, Brand C, Norkiene S, Abreu S, Gaya ACA, et al. Adherence to Southern European Atlantic Diet and physical fitness on the atherogenic index of plasma in adolescents. Cad Saúde Pública. 2019;35(12): e00200418. https://doi.org/10.1590/0102-311x00200418.

    Article  PubMed  Google Scholar 

  116. Lee HS, Jeong WW, Choi YJ, Seo YG, Noh HM, Song HJ, et al. Association between physical fitness and cardiometabolic risk of children and adolescents in Korea. Korean J Fam Med. 2019;40(3):159–64. https://doi.org/10.4082/kjfm.17.0085.

    Article  PubMed  Google Scholar 

  117. Saldanha N, Reuter CP, Renner JDP, Barbian CD, Silveira JFD, Schneiders LD, et al. Low levels of cardiorespiratory fitness and abdominal resistance are associated with metabolic risk in schoolchildren. J Pediatr Endocrinol Metab. 2019;32(5):455–60. https://doi.org/10.1515/jpem-2018-0236.

    Article  CAS  Google Scholar 

  118. Agostinis-Sobrinho C, Brand C, Moreira C, Lopes L, Oliveira-Santos J, Silva P, et al. Muscular fitness, Southern European Atlantic Diet and inflammation in adolescents. Azorean Physical Activity and Health Study II. Eur J Sport Sci. 2018;18(1):104–11. https://doi.org/10.1080/17461391.2017.1394368.

    Article  PubMed  Google Scholar 

  119. Agostinis-Sobrinho C, García-Hermoso A, Ramírez-Vélez R, Moreira C, Lopes L, Oliveira-Santos J, et al. Longitudinal association between ideal cardiovascular health status and muscular fitness in adolescents: the LabMed Physical Activity Study. Nutr Metab Cardiovasc Dis. 2018;28(9):892–9. https://doi.org/10.1016/j.numecd.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  120. Agostinis-Sobrinho C, Ruiz JR, Moreira C, Lopes L, Ramirez-Velez R, Garcia-Hermoso A, et al. Changes in muscular fitness and its association with blood pressure in adolescents. Eur J Pediatr. 2018;177(7):1101–9. https://doi.org/10.1007/s00431-018-3164-4.

    Article  PubMed  Google Scholar 

  121. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–82. https://doi.org/10.1093/ajcn/84.3.475.

    Article  CAS  PubMed  Google Scholar 

  122. Cali AM, Caprio S. Obesity in children and adolescents. J Clin Endocrinol Metab. 2008;93(11_supplement_1):s31–6.

  123. Wells JC. Toward body composition reference data for infants, children, and adolescents. Adv Nutr. 2014;5(3):320S-S329. https://doi.org/10.3945/an.113.005371.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Orsso CE, Tibaes JR, Rubin DA, Field CJ, Heymsfield SB, Prado CM, et al. Metabolic implications of low muscle mass in the pediatric population: a critical review. Metab Clin Exp. 2019;99:102–12. https://doi.org/10.1016/j.metabol.2019.153949.

    Article  CAS  PubMed  Google Scholar 

  125. Tanner JM. Growth at adolescence. Oxford: Blackwell; 1962.

    Google Scholar 

  126. Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C. The developmental origins of sarcopenia. J Nutr Health Aging. 2008;12(7):427–32.

    Article  CAS  Google Scholar 

  127. Fahs C, Heffernen K, Ranadive S, Jae S, Fernhall B. Muscular strength is inversely associated with aortic stiffness in young men. Med Sci Sports Exerc. 2010;42(9):1619–24. https://doi.org/10.1249/mss.0b013e3181d8d834.

    Article  PubMed  Google Scholar 

  128. Loenneke JP, Fahs CA, Heffernan KS, Rossow LM, Thiebaud RS, Bemben MG. Relationship between thigh muscle mass and augmented pressure from wave reflections in healthy adults. Eur J Appl Physiol. 2013;113(2):395–401. https://doi.org/10.1007/s00421-012-2449-y.

    Article  PubMed  Google Scholar 

  129. Hosick PA, McMurray RG, Hackney A, Battaglini CL, Combs TP, Harrell JS. Resting IL-6 and TNF-α level in children of different weight and fitness status. Pediatr Exerc Sci. 2013;25(2):238–47. https://doi.org/10.1123/pes.25.2.238.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Stump CS, Henriksen EJ, Wei Y, Sowers JR. The metabolic syndrome: role of skeletal muscle metabolism. Ann Med. 2006;38(6):389–402. https://doi.org/10.1080/07853890600888413.

    Article  CAS  PubMed  Google Scholar 

  131. Marlatt KL, Steinberger J, Dengel DR, Sinaiko A, Moran A, Chow LS, et al. Impact of pubertal development on endothelial function and arterial elasticity. J Pediatr. 2013;163(5):1432–6. https://doi.org/10.1016/j.jpeds.2013.07.002.

    Article  PubMed  Google Scholar 

  132. Armstrong N, Barker AR, McManus AM. Muscle metabolism changes with age and maturation: How do they relate to youth sport performance? Br J Sports Med. 2015;49(13):860–4. https://doi.org/10.1136/bjsports-2014-094491.

    Article  PubMed  Google Scholar 

  133. Loos R, Thomis M, Maes H, Beunen G, Claessens A, Derom C, et al. Gender-specific regional changes in genetic structure of muscularity in early adolescence. J Appl Physiol. 1997;82(6):1802–10. https://doi.org/10.1152/jappl.1997.82.6.1802.

    Article  CAS  PubMed  Google Scholar 

  134. Thomis M, Beunen G, Leemputte MV, Maes H, Blimkie C, Claessens A, et al. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand. 1998;163(1):59–71. https://doi.org/10.1046/j.1365-201x.1998.00344.x.

    Article  CAS  PubMed  Google Scholar 

  135. Tarp J, Child A, White T, Westgate K, Bugge A, Grøntved A, et al. Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents. Int J Obes. 2018;42(9):1639–50. https://doi.org/10.1038/s41366-018-0152-8.

    Article  Google Scholar 

  136. Boreham C, Riddoch C. The physical activity, fitness and health of children. J Sports Sci. 2001;19(12):915–29. https://doi.org/10.1080/026404101317108426.

    Article  CAS  PubMed  Google Scholar 

  137. Glymour MM, Weuve J, Berkman LF, Kawachi I, Robins JM. When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am J Epidemiol. 2005;162(3):267–78.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the team of the Clinical Analysis Laboratory of the University Hospital “Professor Polydoro Ernani de São Thiago” at Federal University of Santa Catarina, Florianópolis, Brazil, for assisting the research. Dr. Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and Dr. Silva is supported in part by CNPq (302028/2018-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Rodrigues de Lima.

Ethics declarations

Funding

The authors declare that they have not received funding for this article.

Conflict of interest

Tiago Rodrigues de Lima, Priscila Custódio Martins, Yara Maria Franco Moreno, Jean-Philippe Chaput, Mark Tremblay, Xuemei Sui and Diego Augusto Santos Silva declare that they have no conflicts of interest relevant to the content of this review.

Authorship contributions

TRL conceived the review, wrote and edited significant sections of the manuscript, carried out the literature search, screened all identifed studies based on title and abstract, and assisted with the full text screening, the risk-of-bias assessment, and the data extraction process. PCM assisted with the title and abstract screening, the full text screening, and the risk-of-bias assessment. YMFM wrote and edited significant sections of the manuscript. JPC wrote and edited significant sections of the manuscript. MST wrote and edited significant sections of the manuscript. XS revised and edited significant sections of the manuscript and assisted with the risk-of-bias assessment. DASS revised and edited significant sections of the manuscript and assisted with the risk-of-bias assessment. All authors reviewed and approved the final manuscript.

Data availability statement

The material analyzed in this study (including the strategies and descriptors used in each database, the detailed risk-of-bias assessment, and the totality of information analyzed) are available in the Electronic Supplementary Materials.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, T.R., Martins, P.C., Moreno, Y.M.F. et al. Muscular Fitness and Cardiometabolic Variables in Children and Adolescents: A Systematic Review. Sports Med 52, 1555–1575 (2022). https://doi.org/10.1007/s40279-021-01631-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01631-6

Navigation