Skip to main content
Log in

Cardiorespiratory and Muscular Fitness in Children and Adolescents with Obesity

  • Cardiometabolic Disease (DM and CV) (CJ Lavie, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Examine the current state of literature related to the impact of obesity in children and adolescents on health-related physical fitness and the resultant cardiometabolic disease risk.

Recent Findings

Cardiorespiratory fitness of children and adolescents has declined over the past few decades which corresponds with an increase in obesity rates. Children with obesity are more likely to have low cardiorespiratory fitness which is associated with higher cardiometabolic disease risk and poorer mental health. The impact of obesity on muscular fitness in children and adolescents is more difficult to ascertain, but in general measures of physical function are lower in children with obesity which has also been associated with higher cardiometabolic disease risk.

Summary

Components of health-related physical fitness are trending negatively in children and adolescents and appear to be related to the increase in prevalence of obesity. The resultant cardiometabolic disease risk has also risen which suggests a greater disease burden in the future. These disparaging findings highlight the need for aggressive interventions to improve physical fitness in children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med. 2019;381(25):2440–50.

    Article  PubMed  Google Scholar 

  2. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32.

    Article  PubMed  Google Scholar 

  3. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93–621.

    Article  PubMed  Google Scholar 

  4. Divers J, Mayer-Davis EJ, Lawrence JM, Isom S, Dabelea D, Dolan L, et al. Trends in incidence of type 1 and type 2 diabetes among youths - selected counties and Indian reservations, United States, 2002–2015. MMWR Morb Mortal Wkly Rep. 2020;69(6):161–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Overwyk KJ, Zhao L, Zhang Z, Wiltz JL, Dunford EK, Cogswell ME. Trends in blood pressure and usual dietary sodium intake among children and adolescents, National Health and Nutrition Examination Survey 2003 to 2016. Hypertension. 2019;74(2):260–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653–99.

    Article  PubMed  Google Scholar 

  7. Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56(4):382–90.

    Article  PubMed  Google Scholar 

  8. Artero EG, Lee DC, Lavie CJ, Espana-Romero V, Sui X, Church TS, et al. Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev. 2012;32(6):351–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Artero EG, Ruiz JR, Ortega FB, Espana-Romero V, Vicente-Rodriguez G, Molnar D, et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: the HELENA study. Pediatr Diabetes. 2011;12(8):704–12.

    Article  PubMed  Google Scholar 

  10. Robinson S. Experimental studies of physical fitness in relation to age. Arbeitsphysiologie. 1938;10:251–323.

    Google Scholar 

  11. Astrand PO. Experimental studies of physical working capacity in relation to sex and age. Copenhagen: Munksgaard; 1952. p. 171.

    Google Scholar 

  12. Armstrong N, Welsman J, Winsley R. Is peak VO2 a maximal index of children’s aerobic fitness? Int J Sports Med. 1996;17(5):356–9.

    Article  CAS  PubMed  Google Scholar 

  13. Armstrong N, Welsman JR. Peak oxygen uptake in relation to growth and maturation in 11- to 17-year-old humans. Eur J Appl Physiol. 2001;85(6):546–51.

    Article  CAS  PubMed  Google Scholar 

  14. Armstrong N, Kirby BJ, McManus AM, Welsman JR. Aerobic fitness of prepubescent children. Ann Hum Biol. 1995;22(5):427–41.

    Article  CAS  PubMed  Google Scholar 

  15. Rowland TW, Auchinachie JA, Keenan TJ, Green GM. Physiologic responses to treadmill running in adult and prepubertal males. Int J Sports Med. 1987;8(4):292–7.

    Article  CAS  PubMed  Google Scholar 

  16. Rowland TW, Green GM. Physiological responses to treadmill exercise in females: adult-child differences. Med Sci Sports Exerc. 1988;20(5):474–8.

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong N, Welsman JR. Development of aerobic fitness during childhood and adolescence. Pediatr Exerc Sci. 2000;12:128–49.

    Article  Google Scholar 

  18. • Griffith GJ, Wang AP, Liem RI, Carr MR, Corson T, Ward K. Reference values for cardiorespiratory fitness in patients aged 6 to 18 years. J Pediatr. 2023;264:113770. This study provides references values for cardiorespiratory fitness in a large cohort of children. These findings will help clinicians and practitioners categorize fitness when it is assessed.

    Article  PubMed  Google Scholar 

  19. Eisenmann JC, Malina RM. Secular trend in peak oxygen consumption among United States youth in the 20th century. Am J Hum Biol. 2002;14(6):699–706.

    Article  PubMed  Google Scholar 

  20. Armstrong N, Tomkinson G, Ekelund U. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br J Sports Med. 2011;45(11):849–58.

    Article  PubMed  Google Scholar 

  21. Tomkinson GR, Lang JJ, Tremblay MS. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br J Sports Med. 2019;53(8):478–86.

    Article  PubMed  Google Scholar 

  22. Lang JJ, Tremblay MS, Ortega FB, Ruiz JR, Tomkinson GR. Review of criterion-referenced standards for cardiorespiratory fitness: what percentage of 1 142 026 international children and youth are apparently healthy? Br J Sports Med. 2019;53(15):953–8.

    Article  PubMed  Google Scholar 

  23. Gahche J, Fakhouri T, Carroll DD, Burt VL, Wang CY, Fulton JE. Cardiorespiratory fitness levels among U.S. youth aged 12–15 years: United States, 1999–2004 and 2012. NCHS Data Brief. 2014;153:1–8.

    Google Scholar 

  24. Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The Lipid Research Clinics Mortality Follow-up Study. N Engl J Med. 1988;319(21):1379–84.

    Article  CAS  PubMed  Google Scholar 

  25. Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

    Article  CAS  PubMed  Google Scholar 

  26. Blair SN, Kohl HW 3rd, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273(14):1093–8.

    Article  CAS  PubMed  Google Scholar 

  27. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  PubMed  Google Scholar 

  28. Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DL, Kaminsky LA. Cardiorespiratory fitness and mortality in healthy men and women. J Am Coll Cardiol. 2018;72(19):2283–92.

    Article  PubMed  Google Scholar 

  29. Myers J, McAuley P, Lavie CJ, Despres JP, Arena R, Kokkinos P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis. 2015;57(4):306–14.

    Article  PubMed  Google Scholar 

  30. Nes BM, Vatten LJ, Nauman J, Janszky I, Wisloff U. A simple nonexercise model of cardiorespiratory fitness predicts long-term mortality. Med Sci Sports Exerc. 2014;46(6):1159–65.

    Article  PubMed  Google Scholar 

  31. Earnest CP, Artero EG, Sui X, Lee DC, Church TS, Blair SN. Maximal estimated cardiorespiratory fitness, cardiometabolic risk factors, and metabolic syndrome in the aerobics center longitudinal study. Mayo Clin Proc. 2013;88(3):259–70.

    Article  PubMed  Google Scholar 

  32. Schmid D, Leitzmann MF. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. Ann Oncol. 2015;26(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.

    Article  CAS  PubMed  Google Scholar 

  34. Hogstrom G, Nordstrom A, Nordstrom P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: a nationwide cohort study in men. Eur Heart J. 2014;35(44):3133–40.

    Article  PubMed  Google Scholar 

  35. Hogstrom G, Nordstrom A, Eriksson M, Nordstrom P. Risk factors assessed in adolescence and the later risk of stroke in men: a 33-year follow-up study. Cerebrovasc Dis. 2015;39(1):63–71.

    Article  PubMed  Google Scholar 

  36. Lindgren M, Aberg M, Schaufelberger M, Aberg D, Schioler L, Toren K, et al. Cardiorespiratory fitness and muscle strength in late adolescence and long-term risk of early heart failure in Swedish men. Eur J Prev Cardiol. 2017;24(8):876–84.

    Article  PubMed  Google Scholar 

  37. Hogstrom G, Nordstrom A, Nordstrom P. Aerobic fitness in late adolescence and the risk of early death: a prospective cohort study of 1.3 million Swedish men. Int J Epidemiol. 2016;45(4):1159–68.

    Article  PubMed  Google Scholar 

  38. Byrd-Williams CE, Shaibi GQ, Sun P, Lane CJ, Ventura EE, Davis JN, et al. Cardiorespiratory fitness predicts changes in adiposity in overweight Hispanic boys. Obesity (Silver Spring). 2008;16(5):1072–7.

    Article  PubMed  Google Scholar 

  39. Johnson MS, Figueroa-Colon R, Herd SL, Fields DA, Sun M, Hunter GR, et al. Aerobic fitness, not energy expenditure, influences subsequent increase in adiposity in black and white children. Pediatrics. 2000;106(4):E50.

    Article  CAS  PubMed  Google Scholar 

  40. Agostinis-Sobrinho C, Ruiz JR, Moreira C, Abreu S, Lopes L, Oliveira-Santos J, et al. Cardiorespiratory fitness and blood pressure: a longitudinal analysis. J Pediatr. 2018;192:130–5.

    Article  PubMed  Google Scholar 

  41. Sigal RJ, Alberga AS, Goldfield GS, Prud’homme D, Hadjiyannakis S, Gougeon R, et al. Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial. JAMA Pediatr. 2014;168(11):1006–14.

    Article  PubMed  Google Scholar 

  42. Grontved A, Ried-Larsen M, Ekelund U, Froberg K, Brage S, Andersen LB. Independent and combined association of muscle strength and cardiorespiratory fitness in youth with insulin resistance and beta-cell function in young adulthood: the European Youth Heart Study. Diabetes Care. 2013;36(9):2575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kelishadi R, Cook SR, Amra B, Adibi A. Factors associated with insulin resistance and non-alcoholic fatty liver disease among youths. Atherosclerosis. 2009;204(2):538–43.

    Article  CAS  PubMed  Google Scholar 

  44. Agbaje AO, Haapala EA, Lintu N, Viitasalo A, Barker AR, Takken T, et al. Peak oxygen uptake cut-points to identify children at increased cardiometabolic risk - the PANIC Study. Scand J Med Sci Sports. 2019;29(1):16–24.

    Article  PubMed  Google Scholar 

  45. Tacchi MJ, Heggelund J, Scott J. Predictive validity of objective measures of physical fitness for the new onset of mental disorders in adolescents and young adults. Early Interv Psychiatry. 2019;13(6):1310–8.

    Article  PubMed  Google Scholar 

  46. Goldfield GS, Adamo KB, Rutherford J, Murray M. The effects of aerobic exercise on psychosocial functioning of adolescents who are overweight or obese. J Pediatr Psychol. 2012;37(10):1136–47.

    Article  PubMed  Google Scholar 

  47. Reddon H, Meyre D, Cairney J. Physical activity and global self-worth in a longitudinal study of children. Med Sci Sports Exerc. 2017;49(8):1606–13.

    Article  PubMed  Google Scholar 

  48. Padilla-Moledo C, Castro-Pinero J, Ortega FB, Mora J, Marquez S, Sjostrom M, et al. Positive health, cardiorespiratory fitness and fatness in children and adolescents. Eur J Public Health. 2012;22(1):52–6.

    Article  PubMed  Google Scholar 

  49. Rodriguez-Ayllon M, Cadenas-Sanchez C, Esteban-Cornejo I, Migueles JH, Mora-Gonzalez J, Henriksson P, et al. Physical fitness and psychological health in overweight/obese children: a cross-sectional study from the ActiveBrains project. J Sci Med Sport. 2018;21(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  50. Raghuveer G, Hartz J, Lubans DR, Takken T, Wiltz JL, Mietus-Snyder M, et al. Cardiorespiratory fitness in youth: an important marker of health: a scientific statement From the American Heart Association. Circulation. 2020;142(7):e101–18.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pate RR, Wang CY, Dowda M, Farrell SW, O’Neill JR. Cardiorespiratory fitness levels among US youth 12 to 19 years of age: findings from the 1999–2002 National Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med. 2006;160(10):1005–12.

    Article  PubMed  Google Scholar 

  52. Zunquin G, Theunynck D, Sesboüé B, Arhan P, Bouglé D. Comparison of fat oxidation during exercise in lean and obese pubertal boys: clinical implications. Br J Sports Med. 2009;43(11):869–70.

    Article  CAS  PubMed  Google Scholar 

  53. McMurray RG, Hosick PA. The interaction of obesity and puberty on substrate utilization during exercise: a gender comparison. Pediatr Exerc Sci. 2011;23(3):411–31.

    Article  PubMed  Google Scholar 

  54. Savva SC, Tornaritis MJ, Kolokotroni O, Chadjigeorgiou C, Kourides Y, Karpathios T, et al. High cardiorespiratory fitness is inversely associated with incidence of overweight in adolescence: a longitudinal study. Scand J Med Sci Sports. 2014;24(6):982–9.

    Article  CAS  PubMed  Google Scholar 

  55. Martins C, Santos R, Gaya A, Twisk J, Ribeiro J, Mota J. Cardiorespiratory fitness predicts later body mass index, but not other cardiovascular risk factors from childhood to adolescence. Am J Hum Biol. 2009;21(1):121–3.

    Article  PubMed  Google Scholar 

  56. Barnekow-Bergkvist M, Hedberg G, Janlert U, Jansson E. Adolescent determinants of cardiovascular risk factors in adult men and women. Scand J Public Health. 2001;29(3):208–17.

    Article  CAS  PubMed  Google Scholar 

  57. Wang C, Tian Z, Hu Y, Luo Q. Physical activity interventions for cardiopulmonary fitness in obese children and adolescents: a systematic review and meta-analysis. BMC Pediatr. 2023;23(1):558.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Delgado-Floody P, Latorre-Roman P, Jerez-Mayorga D, Caamano-Navarrete F, Garcia-Pinillos F. Feasibility of incorporating high-intensity interval training into physical education programs to improve body composition and cardiorespiratory capacity of overweight and obese children: a systematic review. J Exerc Sci Fit. 2019;17(2):35–40.

    Article  PubMed  Google Scholar 

  59. •• Garcia-Hermoso A, Izquierdo M, Alonso-Martinez AM, Faigenbaum A, Olloquequi J, Ramirez-Velez R. Association between exercise-induced changes in cardiorespiratory fitness and adiposity among overweight and obese youth: a meta-analysis and meta-regression analysis. Children (Basel). 2020;7(9):147. This study determined the minimum amount of exercise-induced increase in CRF that is associated with a significant change in body fat. These findings will guide the development and implementation of exercise programs for overweight youths.

  60. Mijalkovic S, Stankovic D, Tomljanovic M, Batez M, Grle M, Grle I, et al. School-Based exercise programs for promoting cardiorespiratory fitness in overweight and obese children aged 6 to 10. Children (Basel). 2022;9(9):1323.

  61. •• Cao M, Tang Y, Li S, Zou Y. Effects of High-intensity interval training and moderate-intensity continuous training on cardiometabolic risk factors in overweight and obesity children and adolescents: a meta-analysis of randomized controlled trials. Int J Environ Res Public Health. 2021;18(22):11905. This study showed the influence of different types of aerobic exercise training on CVD risk factors in overweight youths, concluding that high-intensity interval training had a greater effect on CRF and blood pressure than traditional moderate intensity exercise.

  62. Browning MG, Bean MK, Wickham EP, Stern M, Evans RK. Cardiometabolic and fitness improvements in obese girls who either gained or lost weight during treatment. J Pediatr. 2015;166(6):1364–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lazzer S, Molin M, Stramare D, Facchini S, Francescato MP. Effects of an eight-month weight-control program on body composition and lipid oxidation rate during exercise in obese children. J Endocrinol Invest. 2008;31(6):509–14.

    Article  CAS  PubMed  Google Scholar 

  64. Wang K, Zhu Y, Wong SH, Chen Y, Siu PM, Baker JS, et al. Effects and dose-response relationship of high-intensity interval training on cardiorespiratory fitness in overweight and obese adults: a systematic review and meta-analysis. J Sports Sci. 2021;39(24):2829–46.

    Article  PubMed  Google Scholar 

  65. Martin-Smith R, Cox A, Buchan DS, Baker JS, Grace F, Sculthorpe N. High Intensity Interval Training (HIIT) Improves cardiorespiratory fitness (CRF) in healthy, overweight and obese adolescents: a systematic review and meta-analysis of controlled studies. Int J Environ Res Public Health. 2020;17(8):2955.

  66. Cattuzzo MT, Dos Santos HR, Re AH, de Oliveira IS, Melo BM, de Sousa MM, et al. Motor competence and health related physical fitness in youth: a systematic review. J Sci Med Sport. 2016;19(2):123–9.

    Article  PubMed  Google Scholar 

  67. de Lima TR, Martins PC, Moreno YMF, Chaput JP, Tremblay MS, Sui X, et al. Muscular fitness and cardiometabolic variables in children and adolescents: a systematic review. Sports Med. 2022;52(7):1555–75.

    Article  PubMed  Google Scholar 

  68. Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  69. Forbes GB. Lean Body Mass and Fat in Obese Children. Pediatrics. 1964;34:308–14.

    Article  CAS  PubMed  Google Scholar 

  70. Deforche B, Lefevre J, De Bourdeaudhuij I, Hills AP, Duquet W, Bouckaert J. Physical fitness and physical activity in obese and nonobese Flemish youth. Obes Res. 2003;11(3):434–41.

    Article  PubMed  Google Scholar 

  71. Suzuki M, Tatsumi M. Effect of therapeutic exercise on physical fitness in a school health program for obese children. Nihon Koshu Eisei Zasshi. 1993;40(1):17–28.

    CAS  PubMed  Google Scholar 

  72. Ervin RB, Fryar CD, Wang CY, Miller IM, Ogden CL. Strength and body weight in US children and adolescents. Pediatrics. 2014;134(3):e782–9.

    Article  PubMed  Google Scholar 

  73. Dumith SC, Ramires VV, Souza MA, Moraes DS, Petry FG, Oliveira ES, et al. Overweight/obesity and physical fitness among children and adolescents. J Phys Act Health. 2010;7(5):641–8.

    Article  PubMed  Google Scholar 

  74. Thivel D, Ring-Dimitriou S, Weghuber D, Frelut ML, O’Malley G. Muscle Strength and Fitness in Pediatric Obesity: a Systematic Review from the European Childhood Obesity Group. Obes Facts. 2016;9(1):52–63.

    Article  PubMed  PubMed Central  Google Scholar 

  75. D’Hondt E, Deforche B, Gentier I, De Bourdeaudhuij I, Vaeyens R, Philippaerts R, et al. A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. Int J Obes (Lond). 2013;37(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  76. Jones D, Innerd A, Giles EL, Azevedo LB. Association between fundamental motor skills and physical activity in the early years: a systematic review and meta-analysis. J Sport Health Sci. 2020;9(6):542–52.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Utesch T, Bardid F, Busch D, Strauss B. The relationship between motor competence and physical fitness from early childhood to early adulthood: a meta-analysis. Sports Med. 2019;49(4):541–51.

    Article  PubMed  Google Scholar 

  78. Benson AC, Torode ME, Singh MA. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. Int J Pediatr Obes. 2006;1(4):222–31.

    Article  PubMed  Google Scholar 

  79. Garcia-Artero E, Ortega FB, Ruiz JR, Mesa JL, Delgado M, Gonzalez-Gross M, et al. Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study). Rev Esp Cardiol. 2007;60(6):581–8.

    PubMed  Google Scholar 

  80. Steene-Johannessen J, Anderssen SA, Kolle E, Andersen LB. Low muscle fitness is associated with metabolic risk in youth. Med Sci Sports Exerc. 2009;41(7):1361–7.

    Article  PubMed  Google Scholar 

  81. Ruiz JR, Ortega FB, Warnberg J, Moreno LA, Carrero JJ, Gonzalez-Gross M, et al. Inflammatory proteins and muscle strength in adolescents: the Avena study. Arch Pediatr Adolesc Med. 2008;162(5):462–8.

    Article  PubMed  Google Scholar 

  82. Physical Activity Alliance. The 2022 United State Report Card on Physical Activity for Children and Youth. Washington, DC; 2022.

  83. Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197-239.

    Article  PubMed  Google Scholar 

  84. Saunders TJ, Gray CE, Poitras VJ, Chaput JP, Janssen I, Katzmarzyk PT, et al. Combinations of physical activity, sedentary behaviour and sleep: relationships with health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S283–93.

    Article  PubMed  Google Scholar 

  85. Belanger K, Barnes JD, Longmuir PE, Anderson KD, Bruner B, Copeland JL, et al. The relationship between physical literacy scores and adherence to Canadian physical activity and sedentary behaviour guidelines. BMC Public Health. 2018;18(Suppl 2):1042.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Telama R, Yang X, Viikari J, Valimaki I, Wanne O, Raitakari O. Physical activity from childhood to adulthood: a 21-year tracking study. Am J Prev Med. 2005;28(3):267–73.

    Article  PubMed  Google Scholar 

  87. Eberhardt T, Niessner C, Oriwol D, Buchal L, Worth A, Bos K. Secular trends in physical fitness of children and adolescents: a review of large-scale epidemiological studies published after 2006. Int J Environ Res Public Health. 2020;17(16):5671.

  88. Neil-Sztramko SE, Caldwell H, Dobbins M. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2021;9(9):CD007651.

    PubMed  Google Scholar 

  89. Mistry MS, Gauvreau K, Alexander ME, Jenkins K, Gauthier N. Socioeconomic factors influencing pediatric peak oxygen consumption prediction. J Pediatr. 2023;264: 113742.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BD, MR, AM, and MH each wrote a significant portion of the manuscript. GG prepared the initial version of the Table and Figure. All authors reviewed, edited, and approved the manuscript, table, and figure.

Corresponding author

Correspondence to Matthew P. Harber.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dykstra, B.J., Griffith, G.J., Renfrow, M.S. et al. Cardiorespiratory and Muscular Fitness in Children and Adolescents with Obesity. Curr Cardiol Rep (2024). https://doi.org/10.1007/s11886-024-02036-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-024-02036-3

Keywords

Navigation