Skip to main content
Log in

Population pharmacokinetics of meropenem in critically ill children with different renal functions

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to develop a meropenem population pharmacokinetic (PK) model in critically ill children and simulate dosing regimens in order to optimize patient exposure.

Methods

Meropenem plasma concentration was quantified by high-performance liquid chromatography. Meropenem PK was investigated using a non-linear mixed-effect modeling approach.

Results

Forty patients with an age of 16.8 (1.4–187.2) months, weight of 9.1 (3.8–59) kg, and estimated glomerular filtration rate (eGFR) of 151 (19–440) mL/min/1.73 m2 were included. Eleven patients received continuous replacement renal therapy (CRRT). Concentration-time courses were best described by a two-compartment model with first-order elimination. Body weight (BW), eGFR, and CRRT were covariates explaining the between-subject variabilities on central/peripheral volume of distribution (V1/V2), inter-compartment clearance (Q), and clearance (CL): V1i = V1pop × (BW/70)1, Qi = Qpop × (BW/70)0.75, V2i = V2pop × (BW/70)1, CLi = (CLpop × (BW/70)0.75) × (eGFR/100)0.378) for patients without CRRT and CLi = (CLpop × (BW/70)0.75) × 0.9 for patients with CRRT, where CLpop, V1pop, Qpop, and V2pop are 6.82 L/h, 40.6 L, 1 L/h, and 9.2 L respectively normalized to a 70-kg subject. Continuous infusion, 60 and 120 mg/kg per day, is the most adequate dosing regimen to attain the target of 50% fT > MIC and 100% fT > MIC for patients infected by bacteria with high minimum inhibitory concentration (MIC) value (> 4 mg/L) without risk of accumulation except in children with severe renal failure.

Conclusion

Continuous infusion allows reaching the fT > MIC targets safely in children with normal or increased renal clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARC:

Augmented renal clearance

BIC:

Bayesian information criteria

BSV:

Between-subject variability

BW:

Body weight

CL:

Clearance

CRP:

C-reactive protein

CRRT:

Continuous renal replacement therapy

ECMO:

Extracorporeal membrane oxygenation

EMA:

European Medicines Agency

eGFR:

Estimated glomerular filtration rate

MIC:

Minimum inhibitory concentration

PCT:

Procalcitonin

PICU:

Pediatric intensive care unit

PK:

Pharmacokinetics

PTA:

Probability of target attainment

V :

Volume of distribution

References

  1. Baldwin CM, Lyseng-Williamson KA, Keam SJ (2008) Meropenem: a review of its use in the treatment of serious bacterial infections. Drugs 68:803–838

    CAS  PubMed  Google Scholar 

  2. Mattoes HM, Kuti JL, Drusano GL, Nicolau DP (2004) Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clin Ther 26:1187–1198

    CAS  PubMed  Google Scholar 

  3. Turnidge JD (1998) The pharmacodynamics of beta-lactams. Clin Infect Dis 27:10–22

    CAS  PubMed  Google Scholar 

  4. Blot SI, Pea F, Lipman J (2014) The effect of pathophysiology on pharmacokinetics in the critically ill patient--concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev 77:3–11

    CAS  PubMed  Google Scholar 

  5. Béranger A, Oualha M, Urien S, Genuini M, Renolleau S, Aboura R, Hirt D, Heilbronner C, Toubiana J, Tréluyer JM, Benaboud S (2018) Population pharmacokinetic model to optimize cefotaxime dosing regimen in critically ill children. Clin Pharmacokinet 57:867–875

    PubMed  Google Scholar 

  6. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NHG (2009) Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 24:67–76

    PubMed  Google Scholar 

  7. Lonsdale DO, Baker EH, Kipper K, Barker C, Philips B, Rhodes A, Sharland M, Standing JF (2019) Scaling beta-lactam antimicrobial pharmacokinetics from early life to old age. Br J Clin Pharmacol 85:316–346

    CAS  PubMed  Google Scholar 

  8. Avedissian SN, Bradley E, Zhang D, Bradley JS, Nazer LH, Tran TM, Nguyen A, le J (2017) Augmented renal clearance using population-based pharmacokinetic modeling in critically ill pediatric patients. Pediatr Crit Care Med 18:e388–e394

    PubMed  Google Scholar 

  9. De Cock PA, Standing JF, Barker CI et al (2015) Augmented renal clearance implies a need for increased amoxicillin-clavulanic acid dosing in critically ill children. Antimicrob Agents Chemother 59:7027–7035

    PubMed  PubMed Central  Google Scholar 

  10. Béranger A, Benaboud S, Urien S, Moulin F, Bille E, Lesage F, Zheng Y, Genuini M, Gana I, Renolleau S, Hirt D, Tréluyer JM, Oualha M (2019) Piperacillin population pharmacokinetics and dosing regimen optimization in critically ill children with normal and augmented renal clearance. Clin Pharmacokinet 58:223–233

    PubMed  Google Scholar 

  11. Leteurtre S, Duhamel A, Salleron J, Grandbastien B, Lacroix J, Leclerc F (2013) PELOD-2: an update of the pediatric logistic organ dysfunction score. Crit Care Med 41:1761–1773

    PubMed  Google Scholar 

  12. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin N Am 34:571–590

    CAS  Google Scholar 

  13. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035

    CAS  PubMed  Google Scholar 

  14. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Hombach M (2012) Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI screening parameters for the detection of extended-spectrum β-lactamase production in clinical Enterobacteriaceae isolates. J Antimicrob Chemother 67:159–166

    CAS  PubMed  Google Scholar 

  15. Legrand T, Chhun S, Rey E et al (2008) Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 875:551–556

    CAS  PubMed  Google Scholar 

  16. Schuster C, Sterz S, Teupser D et al (2018) Multiplex therapeutic drug monitoring by isotope-dilution HPLC-MS/MS of antibiotics in critical illnesses. J Vis Exp 30:138

    Google Scholar 

  17. Anderson BJ, Holford NHG (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332

    CAS  PubMed  Google Scholar 

  18. Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I (2017) Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships. J Antimicrob Chemother 72:2891–2897

    CAS  PubMed  Google Scholar 

  19. van den Anker JN, Pokorna P, Kinzig-Schippers M, Martinkova J, de Groot R, Drusano GL, Sorgel F (2009) Meropenem pharmacokinetics in the newborn. Antimicrob Agents Chemother 53:3871–3879

    PubMed  PubMed Central  Google Scholar 

  20. Ohata Y, Tomita Y, Nakayama M, Kozuki T, Sunakawa K, Tanigawara Y (2011) Optimal dosage regimen of meropenem for pediatric patients based on pharmacokinetic/pharmacodynamic considerations. Drug Metab Pharmacokinet 26:523–531

    CAS  PubMed  Google Scholar 

  21. Cies JJ, Moore WS, Enache A et al (2017) Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J Pediatr Pharmacol Ther 22:276–285

    PubMed  PubMed Central  Google Scholar 

  22. Cies JJ, Moore WS, Conley SB et al (2016) Pharmacokinetics of continuous infusion meropenem with concurrent extracorporeal life support and continuous renal replacement therapy: a case report. J Pediatr Pharmacol Ther 21:92–97

    PubMed  PubMed Central  Google Scholar 

  23. Kongthavonsakul K, Lucksiri A, Eakanunkul S, Roongjang S, Issaranggoon na Ayuthaya S, Oberdorfer P (2016) Pharmacokinetics and pharmacodynamics of meropenem in children with severe infection. Int J Antimicrob Agents 48:151–157

    CAS  PubMed  Google Scholar 

  24. Ikawa K, Morikawa N, Ikeda K, Miki M, Kobayashi M (2010) Population pharmacokinetics and pharmacodynamics of meropenem in Japanese pediatric patients. J Infect Chemother 16:139–143

    CAS  PubMed  Google Scholar 

  25. Du X, Li C, Kuti JL, Nightingale CH et al (2006) Population pharmacokinetics and pharmacodynamics of meropenem in pediatric patients. J Clin Pharmacol 46:69–75

    CAS  PubMed  Google Scholar 

  26. Bradley JS, Sauberan JB, Ambrose PG, Bhavnani SM, Rasmussen MR, Capparelli EV (2008) Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr Infect Dis J 27:794–799

    PubMed  Google Scholar 

  27. Parker EM, Hutchison M, Blumer JL (1995) The pharmacokinetics of meropenem in infants and children: a population analysis. J Antimicrob Chemother 36(Suppl A):63–71

    CAS  PubMed  Google Scholar 

  28. Germovsek E, Lutsar I, Kipper K, Karlsson MO, Planche T, Chazallon C, Meyer L, Trafojer UMT, Metsvaht T, Fournier I, Sharland M, Heath P, Standing JF, NeoMero Consortium, Auriti C, Esposito S, Lorenza P, Ilmoja ML, Drazdiene N, Sarafidis K, Mitsiakos G, van der Flier M, Clarke P, Collinson A, Gupta S, Anthony M, Thomas M, Pattnayak S, Davis J, Rabe H, Pilling E, Bandi S, Sinha A (2018) Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: results from the NeoMero studies. J Antimicrob Chemother 73:1908–1916

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pettit RS, Neu N, Cies JJ, Lapin C, Muhlebach MS, Novak KJ, Nguyen ST, Saiman L, Nicolau DP, Kuti JL (2016) Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother 71:189–195

    CAS  PubMed  Google Scholar 

  30. Christensson BA, Nilsson-Ehle I, Hutchison M, Haworth SJ, Oqvist B, Norrby SR (1992) Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother 36:1532–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sime FB, Udy AA, Roberts JA (2015) Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. Curr Opin Pharmacol 24:1–6

    CAS  PubMed  Google Scholar 

  32. Andersen TB (2012) Estimating renal function in children: a new GFR-model based on serum cystatin C and body cell mass. Dan Med J 59:B4486

    PubMed  Google Scholar 

  33. Craig WA (1997) The pharmacology of meropenem, a new carbapenem antibiotic. Clin Infect Dis 24(Suppl 2):S266–S275

    CAS  PubMed  Google Scholar 

  34. Goldstein SL, Murry DJ, May S et al (2001) Meropenem pharmacokinetics in children and adolescents receiving hemodialysis. Pediatr Nephrol 16:1015–1018

    CAS  PubMed  Google Scholar 

  35. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL, International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498–509

    PubMed  PubMed Central  Google Scholar 

  36. Bradley JS, Dudley MN, Drusano GL (2003) Predicting efficacy of antiinfectives with pharmacodynamics and Monte Carlo simulation. Pediatr Infect Dis J 22:982–992

    PubMed  Google Scholar 

  37. Taccone FS (2012) Continuous infusion of meropenem in critically ill patients: practical considerations. Crit Care 16:444

    PubMed  PubMed Central  Google Scholar 

  38. Mattioli F, Fucile C, Del Bono V et al (2016) Population pharmacokinetics and probability of target attainment of meropenem in critically ill patients. Eur J Clin Pharmacol 72:839–848

    CAS  PubMed  Google Scholar 

  39. Courter JD, Kuti JL, Girotto JE, Nicolau DP (2009) Optimizing bactericidal exposure for beta-lactams using prolonged and continuous infusions in the pediatric population. Pediatr Blood Cancer 53:379–385

    PubMed  Google Scholar 

  40. Udy AA, De Waele JJ, Lipman J (2015) Augmented renal clearance and therapeutic monitoring of β-lactams. Int J Antimicrob Agents 45:331–333

    CAS  PubMed  Google Scholar 

  41. Lee B, Kim J, Park JD, Kang HM, Cho YS, Kim KS (2017) Predicting augmented renal clearance using estimated glomerular filtration rate in critically-ill children. Clin Nephrol 88:148–155

    CAS  PubMed  Google Scholar 

  42. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, Depuydt P, Decruyenaere J, Lipman J, Wallis SC, de Waele JJ (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84

    PubMed  PubMed Central  Google Scholar 

  43. Roberts JA, Kirkpatrick CMJ, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 64:142–150

    CAS  PubMed  Google Scholar 

  44. Ulldemolins M, Soy D, Llaurado-Serra M, Vaquer S, Castro P, Rodríguez AH, Pontes C, Calvo G, Torres A, Martín-Loeches I (2015) Meropenem population pharmacokinetics in critically ill patients with septic shock and continuous renal replacement therapy: influence of residual diuresis on dose requirements. Antimicrob Agents Chemother 59:5520–5528

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the PICU team (physicians and nurses) that selected the children and collected the samples, making this work possible. They also thank the pharmacology laboratory of the Cochin Teaching Hospital, which analyzed the samples.

Authors’ individual contributions

MR collected the data and drafted the manuscript. MO conceived the study and critically revised the manuscript. IG and YZ performed assay analysis. EB identified pathogen agents and related MIC. SU, FF, NB, SB, and DH contributed to acquisition, analysis, and interpretation and also critically revised the manuscript. JMT and SR contributed to conception and design. FL and FM critically revised the manuscript.

Funding

Mélanie Rapp received a grant from the “société française de pédiatrie” for a 1-year research fellowship in the EA7323. The research study received funds from Necker Hospital “financement interne.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Rapp.

Ethics declarations

The Ethics Committee of Necker Hospital approved the study, which was registered at www.clinicaltrials.gov (NCT02539407). Before any inclusion, consent was obtained from children’s parent(s).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Supplemental material (Assessment of meropenem risk of toxicity) Time course concentration for four groups defined according to renal function (A,B,C,D) with various infusion modalities. (dotted blue: 20 mg/kg every 8 h as a 20-min infusion, dotted red: 40 mg/kg every 8 h as a 20-min infusion, dotted dark green: 20 mg/kg every 8 h as a 3-h infusion, blue: 60 mg/kg per day as a continuous infusion after a bolus of 20 mg/kg, red: 120 mg/kg per day as a continuous infusion after a bolus of 20 mg/kg). Nephrotoxicity and neurotoxicity thresholds are represented by horizontal dotted lines (red and black). (DOCX 13 kb)

ESM 2

(PNG 1001 kb)

High resolution image (TIF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapp, M., Urien, S., Foissac, F. et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol 76, 61–71 (2020). https://doi.org/10.1007/s00228-019-02761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-019-02761-7

Keywords

Navigation