Skip to main content
Log in

Pharmacotherapeutic Management of Pediatric Lymphoma

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) comprise approximately 15% of all childhood malignancies. Cure rates for both lymphoma entities have evolved tremendously during the last couple of decades, raising the 5-year survival rates to almost 100% for HL and to 85% for NHL. The mainstay therapy for both malignancies is still chemotherapy—with different regimens recommended for different types of disease. In HL, combined modality treatment, i.e., chemotherapy followed by radiotherapy, has long been the standard regimen. In order to reduce long-term side effects, such as second malignancies, most major pediatric HL consortia have studied response-based radiotherapy reduction strategies over the last 3 decades. For recurrent disease, high-dose chemotherapy followed by an autologous or an allogeneic hematopoietic stem-cell transplant is an option. No targeted agents have yet gained regulatory approval for use in pediatric patients with lymphoma. For adult lymphoma patients, the CD20 antibody rituximab and the CD30 antibody–drug conjugate brentuximab vedotin are targeted agents used regularly in first- and second-line treatment regimens. More recently, immune checkpoint inhibitors, phosphatidyl-inositol-3-kinase inhibitors, and Bruton’s tyrosine kinase inhibitors appear to be very promising new treatment options in adult lymphoma. Here, we discuss the current experience with these types of agents in pediatric lymphoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuppers R. Molecular biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2009:491–6.

  2. Kuppers R. New insights in the biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2012;2012:328–34.

    PubMed  Google Scholar 

  3. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rui L, Emre NC, Kruhlak MJ, et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell. 2010;18:590–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34:2690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harris NL, Jaffe ES, Diebold J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November 1997. Ann Oncol. 1999;10:1419–32.

    Article  CAS  PubMed  Google Scholar 

  7. Mauz-Korholz C, Metzger ML, Kelly KM, et al. Pediatric Hodgkin lymphoma. J Clin Oncol. 2015;33:2975–85.

    Article  PubMed  Google Scholar 

  8. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues, Fourth Edition: WHO; 2008.

  9. Minard-Colin V, Brugieres L, Reiter A, et al. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33:2963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sander S, Calado DP, Srinivasan L, et al. Synergy between PI3 K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell. 2012;22:167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Love C, Sun Z, Jima D, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44:1321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Callens C, Baleydier F, Lengline E, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30:1966–73.

    Article  CAS  PubMed  Google Scholar 

  14. Jenkinson S, Kirkwood AA, Goulden N, Vora A, Linch DC, Gale RE. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia. 2016;30:39–47.

    Article  CAS  PubMed  Google Scholar 

  15. Mansur MB, van Delft FW, Colman SM, et al. Distinctive genotypes in infants with T-cell acute lymphoblastic leukaemia. Br J Haematol. 2015;171:574–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pileri SA, Pulford K, Mori S, et al. Frequent expression of the NPM-ALK chimeric fusion protein in anaplastic large-cell lymphoma, lympho-histiocytic type. Am J Pathol. 1997;150:1207–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8:11–23.

    Article  CAS  PubMed  Google Scholar 

  18. Salaverria I, Beà S, Lopez-Guillermo A, et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Hematol. 2008;140:516–26.

  19. Lamant L, McCarthy K, d’Amore E, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol. 2011;29:4669–76.

    Article  PubMed  Google Scholar 

  20. Schellong G, Bramswig J, Ludwig R, et al. Combined treatment strategy in over 200 children with Hodgkin’s disease: graduated chemotherapy, involved field irradiation with low dosage and selective splenectomy. A report of the cooperative therapy study DAL-HD-82]. Klin Padiatr. 1986;198:137–46.

    Article  CAS  PubMed  Google Scholar 

  21. Weiner MA, Leventhal BG, Marcus R, et al. Intensive chemotherapy and low-dose radiotherapy for the treatment of advanced-stage Hodgkin’s disease in pediatric patients: a Pediatric Oncology Group study. J Clin Oncol. 1991;9:1591–8.

    Article  CAS  PubMed  Google Scholar 

  22. Jr Devita VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73:881–95.

    Article  PubMed  Google Scholar 

  23. Hutchinson RJ, Fryer CJ, Davis PC, et al. MOPP or radiation in addition to ABVD in the treatment of pathologically staged advanced Hodgkin’s disease in children: results of the Children’s Cancer Group Phase III Trial. J Clin Oncol. 1998;16:897–906.

    Article  CAS  PubMed  Google Scholar 

  24. Schellong G, Potter R, Bramswig J, et al. High cure rates and reduced long-term toxicity in pediatric Hodgkin’s disease: the German-Austrian multicenter trial DAL-HD-90. The German-Austrian Pediatric Hodgkin’s Disease Study Group. J Clin Oncol. 1999;17:3736–44.

    Article  CAS  PubMed  Google Scholar 

  25. Bhatia S, Robison LL, Oberlin O, et al. Breast cancer and other second neoplasms after childhood Hodgkin’s disease. N Engl J Med. 1996;334:745–51.

    Article  CAS  PubMed  Google Scholar 

  26. Kung FH, Schwartz CL, Ferree CR, et al. POG 8625: a randomized trial comparing chemotherapy with chemoradiotherapy for children and adolescents with stages I, IIA, IIIA1 Hodgkin disease: a report from the Children’s Oncology Group. J Pediatr Hematol Oncol. 2006;28:362–8.

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz CL, Constine LS, Villaluna D, et al. A risk-adapted, response-based approach using ABVE-PC for children and adolescents with intermediate- and high-risk Hodgkin lymphoma: the results of P9425. Blood. 2009;114:2051–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dorffel W, Ruhl U, Luders H, et al. Treatment of children and adolescents with Hodgkin lymphoma without radiotherapy for patients in complete remission after chemotherapy: final results of the multinational trial GPOH-HD95. J Clin Oncol. 2013;31:1562–8.

    Article  PubMed  Google Scholar 

  29. Mauz-Korholz C, Hasenclever D, Dorffel W, et al. Procarbazine-free OEPA–COPDAC chemotherapy in boys and standard OPPA–COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol. 2010;28:3680–6.

    Article  PubMed  Google Scholar 

  30. Friedman DL, Chen L, Wolden S, et al. Dose-intensive response-based chemotherapy and radiation therapy for children and adolescents with newly diagnosed intermediate-risk Hodgkin lymphoma: a report from the Children’s Oncology Group Study AHOD0031. J Clin Oncol. 2014;32:3651–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Körholz D, Wallace WH, Landman-Parker J. Euro-Net-Paediatric Hodgkin’s Lymphoma Group (Euro-Net-PHL-C1): first international inter-group study for classical Hodgkin’s lymphoma in children and adolescents. http://clinicaltrials.gov/ct/show/NCT00433459:2007. Accessed 31 July 2017.

  32. Mora J, Filippa DA, Qin J, Wollner N. Lymphoblastic lymphoma of childhood and the LSA2-L2 protocol: the 30-year experience at Memorial-Sloan-Kettering Cancer Center. Cancer. 2003;98:1283–91.

    Article  PubMed  Google Scholar 

  33. Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97:3370–9.

    Article  CAS  PubMed  Google Scholar 

  34. Reiter A, Schrappe M, Parwaresch R, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage—a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13:359–72.

    Article  CAS  PubMed  Google Scholar 

  35. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109:2773–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cairo MS, Gerrard M, Sposto R, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109:2736–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cairo MS, Sposto R, Gerrard M, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (>/= 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30:387–93.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 1999;94:3294–306.

    CAS  PubMed  Google Scholar 

  39. Woessmann W, Seidemann K, Mann G, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105:948–58.

    Article  CAS  PubMed  Google Scholar 

  40. Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368:1408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patte C, Kalifa C, Flamant F, et al. Results of the LMT81 protocol, a modified LSA2L2 protocol with high dose methotrexate, on 84 children with non-B-cell (lymphoblastic) lymphoma. Med Pediatr Oncol. 1992;20:105–13.

    Article  CAS  PubMed  Google Scholar 

  42. Reiter A, Schrappe M, Ludwig WD, et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood. 2000;95:416–21.

    CAS  PubMed  Google Scholar 

  43. Burkhardt B, Woessmann W, Zimmermann M, et al. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24:491–9.

    Article  PubMed  Google Scholar 

  44. Brugieres L, Deley MC, Pacquement H, et al. CD30(+) anaplastic large-cell lymphoma in children: analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood. 1998;92:3591–8.

    CAS  PubMed  Google Scholar 

  45. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27:897–903.

    Article  CAS  PubMed  Google Scholar 

  46. Deley MCL, Rosolen A, Williams DM, et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol. 2010;28:3987–93.

    Article  PubMed  Google Scholar 

  47. Schellong G, Dorffel W, Claviez A, et al. Salvage therapy of progressive and recurrent Hodgkin’s disease: results from a multicenter study of the pediatric DAL/GPOH-HD study group. J Clin Oncol. 2005;23:6181–9.

    Article  PubMed  Google Scholar 

  48. Bierman PJ, Anderson JR, Freeman MB, et al. High-dose chemotherapy followed by autologous hematopoietic rescue for Hodgkin’s disease patients following first relapse after chemotherapy. Ann Oncol. 1996;7:151–6.

    Article  CAS  PubMed  Google Scholar 

  49. Sureda A, Pereira MI, Dreger P. The role of hematopoietic stem cell transplantation in the treatment of relapsed/refractory Hodgkin’s lymphoma. Curr Opin Oncol. 2012;24:727–32.

    Article  CAS  PubMed  Google Scholar 

  50. Metzger ML, Hudson MM, Krasin MJ, et al. Initial response to salvage therapy determines prognosis in relapsed pediatric Hodgkin lymphoma patients. Cancer. 2010;116:4376–84.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lieskovsky YE, Donaldson SS, Torres MA, et al. High-dose therapy and autologous hematopoietic stem-cell transplantation for recurrent or refractory pediatric Hodgkin’s disease: results and prognostic indices. J Clin Oncol. 2004;22:4532–40.

    Article  PubMed  Google Scholar 

  52. Gorde-Grosjean S, Oberlin O, Leblanc T, et al. Outcome of children and adolescents with recurrent/refractory classical Hodgkin lymphoma, a study from the Societe Francaise de Lutte contre le Cancer des Enfants et des Adolescents (SFCE). Br J Haematol. 2012;158:649–56.

    Article  PubMed  Google Scholar 

  53. Shafer JA, Heslop HE, Brenner MK, et al. Outcome of hematopoietic stem cell transplant as salvage therapy for Hodgkin’s lymphoma in adolescents and young adults at a single institution. Leuk Lymphoma. 2010;51:664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harris RE, Termuhlen AM, Smith LM, et al. Autologous peripheral blood stem cell transplantation in children with refractory or relapsed lymphoma: results of Children’s Oncology Group study A5962. Biol Blood Marrow Transpl. 2011;17:249–58.

    Article  Google Scholar 

  55. Baker KS, Gordon BG, Gross TG, et al. Autologous hematopoietic stem-cell transplantation for relapsed or refractory Hodgkin’s disease in children and adolescents. J Clin Oncol. 1999;17:825–31.

    Article  CAS  PubMed  Google Scholar 

  56. Harker-Murray PD, Drachtman RA, Hodgson DC, Chauvenet AR, Kelly KM, Cole PD. Stratification of treatment intensity in relapsed pediatric Hodgkin lymphoma. Pediatr Blood Cancer. 2014;61:579–86.

    Article  PubMed  Google Scholar 

  57. Satwani P, Ahn KW, Carreras J, et al. A prognostic model predicting autologous transplantation outcomes in children, adolescents and young adults with Hodgkin lymphoma. Bone Marrow Transpl. 2015;50:1416–23.

    Article  CAS  Google Scholar 

  58. Perales MA, Ceberio I, Armand P, et al. Role of cytotoxic therapy with hematopoietic cell transplantation in the treatment of Hodgkin lymphoma: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transpl. 2015;21:971–83.

    Article  Google Scholar 

  59. Claviez A, Canals C, Dierickx D, et al. Allogeneic hematopoietic stem cell transplantation in children and adolescents with recurrent and refractory Hodgkin lymphoma: an analysis of the European Group for Blood and Marrow Transplantation. Blood. 2009;114:2060–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kuruvilla J, Pintilie M, Stewart D, et al. Outcomes of reduced-intensity conditioning allo-SCT for Hodgkin’s lymphoma: a national review by the Canadian Blood and Marrow Transplant Group. Bone Marrow Transpl. 2010;45:1253–5.

    Article  CAS  Google Scholar 

  61. Chen R, Palmer JM, Popplewell L, et al. Reduced intensity allogeneic hematopoietic cell transplantation can induce durable remission in heavily pretreated relapsed Hodgkin lymphoma. Ann Hematol. 2011;90:803–8.

    Article  PubMed  Google Scholar 

  62. Peggs KS, Hunter A, Chopra R, et al. Clinical evidence of a graft-versus-Hodgkin’s-lymphoma effect after reduced-intensity allogeneic transplantation. Lancet. 2005;365:1934–41.

    Article  PubMed  Google Scholar 

  63. Peggs KS, Kayani I, Edwards N, et al. Donor lymphocyte infusions modulate relapse risk in mixed chimeras and induce durable salvage in relapsed patients after T-cell-depleted allogeneic transplantation for Hodgkin’s lymphoma. J Clin Oncol. 2011;29:971–8.

    Article  CAS  PubMed  Google Scholar 

  64. Griffin TC, Weitzman S, Weinstein H, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;52:177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gross TG, Hale GA, He W, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transpl. 2010;16:223–30.

    Article  Google Scholar 

  66. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29:3065–71.

    Article  PubMed  Google Scholar 

  67. Brugieres L, Pacquement H, Le Deley MC, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27:5056–61.

    Article  CAS  PubMed  Google Scholar 

  68. Pulford K, Falini B, Banham AH, et al. Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma. Blood. 2000;96:1605–7.

    CAS  PubMed  Google Scholar 

  69. Schellong G, Riepenhausen M, Bruch C, et al. Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for Hodgkin disease in children and adolescents: report from the longitudinal GPOH follow-up project of the German-Austrian DAL-HD studies. Pediatr Blood Cancer. 2010;55:1145–52.

    Article  PubMed  Google Scholar 

  70. Dorffel W, Riepenhausen M, Luders H, Bramswig J. Late effects following treatment of Hodgkin lymphoma during childhood and adolescence. Results of the Hodgkin lymphoma late effects research project. Klin Padiatr. 2016;228:286–93.

    Article  CAS  PubMed  Google Scholar 

  71. Zheng B, Georgakis GV, Li Y, et al. Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-kappaB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res. 2004;10:3207–15.

    Article  CAS  PubMed  Google Scholar 

  72. Fanale M, Fayad L, Pro B, et al. Phase I study of bortezomib plus ICE (BICE) for the treatment of relapsed/refractory Hodgkin lymphoma. Br J Haematol. 2011;154:284–6.

    Article  CAS  PubMed  Google Scholar 

  73. Horton TM, Drachtman RA, Chen L, et al. A phase 2 study of bortezomib in combination with ifosfamide/vinorelbine in paediatric patients and young adults with refractory/recurrent Hodgkin lymphoma: a Children’s Oncology Group study. Br J Haematol. 2015;170:118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karuturi M, Younes A, Fayad L, et al. Ifosfamide, carboplatin, etoposide with or without bortezomib in patients with relapsed/refractory Hodgkin lymphoma: results of a randomized phase II trial. Leuk Lymphoma. 2016;57:445–7.

  75. Younes A, Romaguera J, Fanale M, et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J Clin Oncol. 2012;30:4161–7.

    Article  CAS  PubMed  Google Scholar 

  76. Meadows SA, Vega F, Kashishian A, et al. PI3 Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood. 2012;119:1897–900.

    Article  CAS  PubMed  Google Scholar 

  77. Gopal AK, Fanale MA, Moskowitz CH, et al. Phase II study of idelalisib, a selective inhibitor of PI3 Kdelta, for relapsed/refractory classical Hodgkin lymphoma. Ann Oncol. 2017;28:1057–63.

    Article  CAS  PubMed  Google Scholar 

  78. Younes A, Berdeja JG, Patel MR, et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3 K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2016;17:622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21:922–6.

    Article  CAS  PubMed  Google Scholar 

  80. Rosenthal A. Small molecule inhibitors in chronic lymphocytic lymphoma and B cell non-Hodgkin lymphoma. Current hematologic malignancy reports 2017.

  81. Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125:22–32.

    Article  CAS  PubMed  Google Scholar 

  82. Batlevi CL, Younes A. Novel therapy for Hodgkin lymphoma. Hematol Am Soc Hematol Educ Program. 2013;2013:394–9.

    Google Scholar 

  83. Buglio D, Georgakis GV, Hanabuchi S, et al. Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood. 2008;112:1424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lemoine M, Derenzini E, Buglio D, et al. The pan-deacetylase inhibitor panobinostat induces cell death and synergizes with everolimus in Hodgkin lymphoma cell lines. Blood. 2012;119:4017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Therapeutic Advances in Childhood Leukemia Consortium. A study of panobinostat in children with refractory hematologic malignancies. https://clinicaltrials.gov/ct2/show/NCT01321346. Accessed 31 July 2017.

  86. Apuri S, Sokol L. An overview of investigational histone deacetylase inhibitors (HDACis) for the treatment of non-Hodgkin’s lymphoma. Expert Opin Investig Drugs. 2016;25:687–96.

    Article  CAS  PubMed  Google Scholar 

  87. Rahmani M, Aust MM, Benson EC, Wallace L, Friedberg J, Grant S. PI3 K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res. 2014;20:4849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dubois S, Mareschal S, Picquenot JM, et al. Immunohistochemical and genomic profiles of diffuse large B-cell lymphomas: implications for targeted EZH2 inhibitor therapy? Oncotarget. 2015;6:16712–24.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30:2183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14:1348–56.

    Article  CAS  PubMed  Google Scholar 

  91. Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385:1853–62.

    Article  CAS  PubMed  Google Scholar 

  92. Locatelli F, Neville K, Rosolen A, et al. Phase 1/2 study of brentuximab vedotin in pediatric pts with relapsed/refractory (R/R) Hodgkin lymphoma (HL) or systemic anaplastic large-cell lymphoma (sALCL): preliminary phase 2 HL data. Klinische Padiatrie. 2014;226((abstr O-20)):117.

    Google Scholar 

  93. Locatelli F, Mauz-Koerholz C, Neville K, et al. A phase1/2 study of brentuximab vedotin in pediatric parients with relapsed/refractory (R/R) systemic anaplastic large‐cell lymphoma (sALCL) or R/R Hodgkin lymphoma (HL). 14th International Conference on Malignant Lymphoma. Palazzo dei Congressi, Lugano (Switzerland): Wiley; 2017:248 (abstr 51).

  94. LaCasce AS, Bociek G, Sawas A, et al. Brentuximab vedotin plus bendamustine: a highly active salvage treatment regimen for patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015(abstr);126:3982.

  95. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol. 2010;28:3115–21.

    Article  CAS  PubMed  Google Scholar 

  96. Goldman S, Smith L, Anderson JR, et al. Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Leukemia. 2013;27:1174–7.

    Article  CAS  PubMed  Google Scholar 

  97. Goldman S, Smith L, Galardy P, et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive Burkitt lymphoma/leukaemia: a Children’s Oncology Group Report. Br J Haematol. 2014;167:394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Minard-Colin V, Auperin A, Pillon M, et al. Results of the randomized Intergroup trial Inter-B-NHL Ritux 2010 for children and adolescents with high-risk B-cell non-Hodgkin lymphoma (B-NHL) and mature acute leukemia (B-AL): evaluation of rituximab (R) efficacy in addition to standard LMB chemotherapy (CT) regimen. Journal of Clinical Oncology 2016 (abstr);34:10507.

  99. Minard-Colin V, Auperin A, Pillon M, al. e. Results of the randomized intergroup trial inter-B-NHL Ritux 2010 for children/adolescents with high-risk B-cell non Hodgkin’s lymphoma (B-NHL) and mature acute leukemia (B-AL). Pediatric Blood and Cancer 2016 (abstr O-104);63:S31.

  100. Advani RH, Horning SJ, Hoppe RT, et al. Mature results of a phase II study of rituximab therapy for nodular lymphocyte-predominant Hodgkin lymphoma. J Clin Oncol. 2014;32:912–8.

    Article  CAS  PubMed  Google Scholar 

  101. Fanale MA, Cheah CY, Rich A, et al. Encouraging activity for R-CHOP in advanced stage nodular lymphocyte predominant Hodgkin lymphoma. Blood. 2017;130:472–7.

  102. Mauz-Korholz C, Lange T, Hasenclever D, et al. Pediatric nodular lymphocyte-predominant Hodgkin lymphoma: treatment recommendations of the GPOH-HD study Group. Klin Padiatr. 2015;227:314–21.

    Article  CAS  PubMed  Google Scholar 

  103. Gambacorti Passerini C, Farina F, Stasia A, et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst 2014;106:djt378.

  104. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.

    Article  PubMed  Google Scholar 

  107. Armand P, Shipp MA, Ribrag V, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016 Jun 27. pii: JCO673467. [Epub ahead of print].

  108. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bollard CM, Gottschalk S, Torrano V, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32:798–808.

    Article  CAS  PubMed  Google Scholar 

  111. Flerlage JE, Kelly KM, Beishuizen A, et al. Staging Evaluation and Response Criteria Harmonization (SEARCH) for Childhood, Adolescent and Young Adult Hodgkin Lymphoma (CAYAHL): methodology statement. Pediatr Blood Cancer. 2017;64(7). doi:10.1002/pbc.26421. Epub 2017 Jan 18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Mauz-Körholz.

Ethics declarations

Funding

No sources of funding were used to prepare this review article. Katharina Körholz is funded by the Heinrich F.C. Behr-Stiftung for her doctoral thesis.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauz-Körholz, C., Ströter, N., Baumann, J. et al. Pharmacotherapeutic Management of Pediatric Lymphoma. Pediatr Drugs 20, 43–57 (2018). https://doi.org/10.1007/s40272-017-0265-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-017-0265-x

Navigation