Skip to main content
Log in

Treat secondary hyperparathyroidism in chronic kidney disease according to disease severity and trends in laboratory markers

  • Disease Management
  • Published:
Drugs & Therapy Perspectives Aims and scope Submit manuscript

Abstract

Secondary hyperparathyroidism (SHPT), a common complication of chronic kidney disease (CKD), is driven by a decline in kidney function and progressive deterioration in mineral homeostasis. SHPT is interrelated with other biochemical abnormalities (e.g. hyperphosphataemia, hypocalcaemia and vitamin D deficiency), bone abnormalities and vascular or other soft-tissue calcification, collectively termed CKD-mineral and bone disorder (MBD). As CKD-MBD is associated with increased morbidity and mortality in CKD patients, effective management of SHPT in CKD involves monitoring trends in laboratory markers, evaluating patients for modifiable risk factors and using pharmacological/medical treatment when necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. National chronic kidney disease fact sheet, 2017. https://nccd.cdc.gov/ckd/. Accessed 26 Jul 2017.

  2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7(1):1–59.

    Article  Google Scholar 

  3. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76(Suppl 113):S1–130.

    Google Scholar 

  4. Salam SN, Khwaja A, Wilkie ME. Pharmacological management of secondary hyperparathyroidism in patients with chronic kidney disease. Drugs. 2016;76(8):841–52.

    Article  CAS  PubMed  Google Scholar 

  5. Busaidy NL, Lahoti A, Hanley DA. Secondary hyperparathyroidism. In: Khan AA, Co H, editors. Handbook of parathyroid diseases: a case-based practical guide. New York: Springer-Verlag; 2012. p. 141–58.

    Chapter  Google Scholar 

  6. Isakova T, Gutierrez OM, Smith K, et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol Dial Transpl. 2011;26(2):584–91.

    Article  CAS  Google Scholar 

  7. Burnett SM, Gunawardene SC, Bringhurst FR, et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.

    Article  CAS  PubMed  Google Scholar 

  8. Shinaberger CS, Greenland S, Kopple JD, et al. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am J Clin Nutr. 2008;88(6):1511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mudge DW, Johnson DW, Hawley CM, et al. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice? BMC Nephrol. 2011;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Navaneethan SD, Palmer SC, Craig JC, et al. Benefits and harms of phosphate binders in CKD: a systematic review of randomized controlled trials. Am J Kidney Dis. 2009;54(4):619–37.

    Article  CAS  PubMed  Google Scholar 

  11. Jamal SA, Vandermeer B, Raggi P, et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268–77.

    Article  CAS  PubMed  Google Scholar 

  12. Bhan I, Dobens D, Tamez H, et al. Nutritional vitamin D supplementation in dialysis: a randomized trial. Clin J Am Soc Nephrol. 2015;10(4):611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delanaye P, Weekers L, Warling X, et al. Cholecalciferol in haemodialysis patients: a randomized, double-blind, proof-of-concept and safety study. Nephrol Dial Transpl. 2013;28(7):1779–86.

    Article  Google Scholar 

  14. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350(15):1516–25.

    Article  CAS  PubMed  Google Scholar 

  15. Chertow GM, Block GA, Correa-Rotter R, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367(26):2482–94.

    Article  CAS  PubMed  Google Scholar 

  16. Parfrey PS, Drueke TB, Block GA, et al. The effects of cinacalcet in older and younger patients on hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Clin J Am Soc Nephrol. 2015;10(5):791–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kubo Y, Sterling LR, Parfrey PS, et al. Assessing the treatment effect in a randomized controlled trial with extensive non-adherence: the EVOLVE trial. Pharm Stat. 2015;14(3):242–51.

    Article  PubMed  Google Scholar 

  18. Parfrey PS, Chertow GM, Block GA, et al. The clinical course of treated hyperparathyroidism among patients receiving hemodialysis and the effect of cinacalcet: the EVOLVE trial. J Clin Endocrinol Metab. 2013;98(12):4834–44.

    Article  CAS  PubMed  Google Scholar 

  19. Moe SM, Abdalla S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol. 2015;26(6):1466–75.

    Article  CAS  PubMed  Google Scholar 

  20. Shoben AB, Rudser KD, de Boer IH, et al. Association of oral calcitriol with improved survival in nondialyzed CKD. J Am Soc Nephrol. 2008;19(8):1613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andress DL, Norris KC, Coburn JW, et al. Intravenous calcitriol in the treatment of refractory osteitis fibrosa of chronic renal failure. N Engl J Med. 1989;321(5):274–9.

    Article  CAS  PubMed  Google Scholar 

  22. Wang AY, Fang F, Chan J, et al. Effect of paricalcitol on left ventricular mass and function in CKD: the OPERA trial. J Am Soc Nephrol. 2014;25(1):175–86.

    Article  CAS  PubMed  Google Scholar 

  23. Thadhani R, Appelbaum E, Pritchett Y, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012;307(7):674–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Ethics declarations

The article was adapted from Drugs 2016;76(8):841–52 [4] by salaried employees of Adis/Springer and was not supported by any external funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adis Medical Writers. Treat secondary hyperparathyroidism in chronic kidney disease according to disease severity and trends in laboratory markers. Drugs Ther Perspect 33, 535–540 (2017). https://doi.org/10.1007/s40267-017-0441-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40267-017-0441-7

Navigation