Skip to main content
Log in

New Developments in Glucagon Treatment for Hypoglycemia

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Glucagon is essential for endogenous glucose regulation along with the paired hormone, insulin. Unlike insulin, pharmaceutical use of glucagon has been limited due to the unstable nature of the peptide. Glucagon has the potential to address hypoglycemia as a major limiting factor in the treatment of diabetes, which remains very common in the type 1 and type 2 diabetes. Recent developments are poised to change this paradigm and expand the use of glucagon for people with diabetes. Glucagon emergency kits have major limitations for their use in treating severe hypoglycemia. A complicated reconstitution and injection process often results in incomplete or aborted administration. New preparations include intranasal glucagon with an easy-to-use and needle-free nasal applicator as well as two stable liquid formulations in pre-filled injection devices. These may ease the burden of severe hypoglycemia treatment. The liquid preparations may also have a role in the treatment of non-severe hypoglycemia. Despite potential benefits of expanded use of glucagon, undesirable side effects (nausea, vomiting), cost, and complexity of adding another medication may limit real-world use. Additionally, more long-term safety and outcome data are needed before widespread, frequent use of glucagon is recommended by providers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Draznin B, Aroda VR, Bakris G, Benson G, et al. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S83-S96.

  2. Frier BM. Hypoglycaemia in diabetes mellitus: epidemiology and clinical implications. Nat Rev Endocrinol. 2014;10(12):711–22.

    Article  CAS  PubMed  Google Scholar 

  3. Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR, DiMeglio LA, et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol Ther. 2019;21(2):66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beck RW, Riddlesworth T, Ruedy K, Ahmann A, Bergenstal R, Haller S, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND Randomized Clinical Trial. JAMA. 2017;317(4):371–8.

    Article  CAS  PubMed  Google Scholar 

  5. Lind M, Polonsky W, Hirsch IB, Heise T, Bolinder J, Dahlqvist S, et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD Randomized Clinical Trial. JAMA. 2017;317(4):379–87.

    Article  CAS  PubMed  Google Scholar 

  6. U. K. Hypoglycaemia Study Group. Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia. 2007;50(6):1140–7.

    Article  CAS  Google Scholar 

  7. International Hypoglycaemia Study Group. Minimizing Hypoglycemia in Diabetes. Diabetes Care. 2015;38(8):1583–91.

    Article  Google Scholar 

  8. Silbert R, Salcido-Montenegro A, Rodriguez-Gutierrez R, Katabi A, McCoy RG. Hypoglycemia among patients with type 2 diabetes: epidemiology, risk factors, and prevention strategies. Curr Diab Rep. 2018;18(8):53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Brazeau AS, Rabasa-Lhoret R, Strychar I, Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31(11):2108–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Domgaard M, Bagger M, Rhee NA, Burton CM, Thorsteinsson B. Individual and societal consequences of hypoglycemia: a cross-sectional survey. Postgrad Med. 2015;127(5):438–45.

    Article  PubMed  Google Scholar 

  11. Zaccardi F, Davies MJ, Dhalwani NN, Webb DR, Housley G, Shaw D, et al. Trends in hospital admissions for hypoglycaemia in England: a retrospective, observational study. Lancet Diabetes Endocrinol. 2016;4(8):677–85.

    Article  PubMed  Google Scholar 

  12. Geller AI, Shehab N, Lovegrove MC, Kegler SR, Weidenbach KN, Ryan GJ, et al. National estimates of insulin-related hypoglycemia and errors leading to emergency department visits and hospitalizations. JAMA Intern Med. 2014;174(5):678–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hawkes CP, De Leon DD, Rickels MR. Novel Preparations of Glucagon for the Prevention and Treatment of Hypoglycemia. Curr Diab Rep. 2019;19(10):97.

    Article  PubMed  PubMed Central  Google Scholar 

  14. La Sala L, Pontiroli AE. New fast acting glucagon for recovery from hypoglycemia, a life-threatening situation: nasal powder and injected stable solutions. Int J Mol Sci. 2021;22(19).

  15. Rabinovich A, Priefer R. Glucagon delivery - An overview of current and future devices. Diabetes Metab Syndr. 2021;15(4):102155.

    Article  PubMed  Google Scholar 

  16. Thieu VT, Mitchell BD, Varnado OJ, Frier BM. Treatment and prevention of severe hypoglycaemia in people with diabetes: Current and new formulations of glucagon. Diabetes Obes Metab. 2020;22(4):469–79.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ahren B. Glucagon-Early breakthroughs and recent discoveries. Peptides. 2015;67:74–81.

    Article  CAS  PubMed  Google Scholar 

  18. Murlin JRC, Harry D; Gibbs, C B F; Stokes, Arthur M. Aqueous extracts of pancreas: 1. Influence on the carbohydrate metabolism of depancreatized animals. The Journal of biological chemistry. 1923 May 01, 1923;56(1):253-96.

  19. Sutherland EW, De Duve C. Origin and distribution of the hyperglycemic-glycogenolytic factor of the pancreas. J Biol Chem. 1948;175(2):663–74.

    Article  CAS  PubMed  Google Scholar 

  20. Foa PP, Weinstein HR, Smith JA. Secretion of insulin and of a hyperglycemic substance studied by means of pancreatic-femoral cross-circulation experiments. Am J Physiol. 1949;157(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  21. Bromer WW, Sinn LG, Staub A, Behrens OK. The amino acid sequence of glucagon. Diabetes. 1957;6(3):234–8.

    Article  CAS  PubMed  Google Scholar 

  22. Determination That GLUCAGON (Glucagon Hydrochloride) for Injection, Equivalent to 1 Milligram Base/Vial and Equivalent to 10 Milligram Base/Vial, Was Not Withdrawn From Sale for Reasons of Safety or Effectiveness (Docket No. FDA–2007–P–0248]). Federal Register. 2015;80(174):54294–5. https://www.govinfo.gov/content/pkg/FR-2015-09-09/pdf/2015-22673.pdf

  23. Gerich JE, Schneider V, Dippe SE, Langlois M, Noacco C, Karam JH, et al. Characterization of the glucagon response to hypoglycemia in man. J Clin Endocrinol Metab. 1974;38(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  24. Cryer PE. Glucose counterregulation in man. Diabetes. 1981;30(3):261–4.

    Article  CAS  PubMed  Google Scholar 

  25. Bolli GB, Dimitriadis GD, Pehling GB, Baker BA, Haymond MW, Cryer PE, et al. Abnormal glucose counterregulation after subcutaneous insulin in insulin-dependent diabetes mellitus. N Engl J Med. 1984;310(26):1706–11.

    Article  CAS  PubMed  Google Scholar 

  26. Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC. Exon duplication and divergence in the human preproglucagon gene. Nature. 1983;304(5924):368–71.

    Article  CAS  PubMed  Google Scholar 

  27. Administration USFD. HIGHLIGHTS OF PRESCRIBING INFORMATION: GlucaGen® (glucagon [rDNA origin] for injection) [cited 2022 March 24]; https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020918s030lbl.pdf

  28. Administration USFD. INFORMATION FOR THE PHYSICIAN: GLUCAGON FOR INJECTION (rDNA ORIGIN) [cited 2022 March 24]; https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/20928slr010_glucagon_lbl.pdf

  29. Administration USFD. HIGHLIGHTS OF PRESCRIBING INFORMATION: BAQSIMI (glucagon) nasal powder. [cited 2022 March 24]; https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210134s000lbl.pdf. Accessed 8 Feb 2022.

  30. Administration USFD. HIGHLIGHTS OF PRESCRIBING INFORMATION: GVOKE (glucagon) injection, for subcutaneous use. [cited 2022 March 24]; https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212097s000lbl.pdf. Accessed 8 Feb 2022.

  31. Administration USFD. HIGHLIGHTS OF PRESCRIBING INFORMATION: ZEGALOGUE (dasiglucagon) injection, for subcutaneous use [cited 2022 March 24]; https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214231s000lbl.pdf. Accessed 8 Feb 2022.

  32. Rouillé Y, Kantengwa S, Irminger JC, Halban PA. Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon-like peptide 1. J Biol Chem. 1997;272(52):32810–6.

    Article  PubMed  Google Scholar 

  33. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  34. Svoboda M, Tastenoy M, Vertongen P, Robberecht P. Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol Cell Endocrinol. 1994;105(2):131–7.

    Article  CAS  PubMed  Google Scholar 

  35. Freychet L, Rizkalla SW, Desplanque N, Basdevant A, Zirinis P, Tchobroutsky G, et al. Effect of intranasal glucagon on blood glucose levels in healthy subjects and hypoglycaemic patients with insulin-dependent diabetes. Lancet. 1988;1(8599):1364–6.

    Article  CAS  PubMed  Google Scholar 

  36. Adeva-Andany MM, Funcasta-Calderon R, Fernandez-Fernandez C, Castro-Quintela E, Carneiro-Freire N. Metabolic effects of glucagon in humans. J Clin Transl Endocrinol. 2019;15:45–53.

    PubMed  Google Scholar 

  37. Gerich JE, Lorenzi M, Hane S, Gustafson G, Guillemin R, Forsham PH. Evidence for a physiologic role of pancreatic glucagon in human glucose homeostasis: studies with somatostatin. Metabolism. 1975;24(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  38. Hvidberg A, Djurup R, Hilsted J. Glucose recovery after intranasal glucagon during hypoglycaemia in man. Eur J Clin Pharmacol. 1994;46(1):15–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lins PE, Wajngot A, Adamson U, Vranic M, Efendić S. Minimal increases in glucagon levels enhance glucose production in man with partial hypoinsulinemia. Diabetes. 1983;32(7):633–6.

    Article  CAS  PubMed  Google Scholar 

  40. Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev. 2007;28(1):84–116.

    Article  CAS  PubMed  Google Scholar 

  41. Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl). 2020;98(4):451–67.

    Article  PubMed Central  Google Scholar 

  42. Taborsky GJ Jr. The physiology of glucagon. J Diabetes Sci Technol. 2010;4(6):1338–44.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaneko K, Shirotani T, Araki E, Matsumoto K, Taguchi T, Motoshima H, et al. Insulin inhibits glucagon secretion by the activation of PI3-kinase in In-R1-G9 cells. Diabetes Res Clin Pract. 1999;44(2):83–92.

    Article  CAS  PubMed  Google Scholar 

  44. Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, et al. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes. 2004;53(4):1038–45.

    Article  CAS  PubMed  Google Scholar 

  45. Gedulin BR, Rink TJ, Young AA. Dose-response for glucagonostatic effect of amylin in rats. Metabolism. 1997;46(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  46. Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol. 2003;5(4):330–5.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP. Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes. 2007;56(4):1107–12.

    Article  CAS  PubMed  Google Scholar 

  48. Gromada J, Høy M, Buschard K, Salehi A, Rorsman P. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules. J Physiol. 2001;535(Pt 2):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20(3):157–98.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y. Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett. 1999;444(2–3):265–9.

    Article  CAS  PubMed  Google Scholar 

  51. Beuers U, Jungermann K. Relative contribution of glycogenolysis and gluconeogenesis to basal, glucagon- and nerve stimulation-dependent glucose output in the perfused liver from fed and fasted rats. Biochem Int. 1990;21(3):405–15.

    CAS  PubMed  Google Scholar 

  52. Doi Y, Iwai M, Matsuura B, Onji M. Glucagon attenuates the action of insulin on glucose output in the liver of the Goto-Kakizaki rat perfused in situ. Pflugers Arch. 2001;442(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  53. Ikeda T, Hoshino T, Honda M, Takeuchi T, Mokuda O, Tominaga M, et al. Effect of glucagon on glucose output from bivascularly perfused rat liver. Exp Clin Endocrinol. 1989;94(3):383–6.

    CAS  PubMed  Google Scholar 

  54. Band G, Jones CT. Activation by glucagon of glucose 6-phosphatase activity in the liver of the foetal guinea pig. Biochem Soc Trans. 1984;8(5):586–7.

    Article  Google Scholar 

  55. Band GC, Jones CT. Functional activation by glucagon of glucose 6-phosphatase and gluconeogenesis in the perfused liver of the fetal guinea pig. FEBS Lett. 1980;119(1):190–4.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284(4):E671–8.

    Article  CAS  PubMed  Google Scholar 

  57. Striffler JS, Garfield SA, Cardell EL, Cardell RR. Effects of glucagon on hepatic microsomal glucose-6-phosphatase in vivo. Diabete Metab. 1984;10(2):91–7.

    CAS  PubMed  Google Scholar 

  58. Akatsuka A, Singh TJ, Nakabayashi H, Lin MC, Huang KP. Glucagon-stimulated phosphorylation of rat liver glycogen synthase in isolated hepatocytes. J Biol Chem. 1985;260(6):3239–42.

    Article  CAS  PubMed  Google Scholar 

  59. Ciudad C, Camici M, Ahmad Z, Wang Y, DePaoli-Roach AA, Roach PJ. Control of glycogen synthase phosphorylation in isolated rat hepatocytes by epinephrine, vasopressin and glucagon. Eur J Biochem. 1984;142(3):511–20.

    Article  CAS  PubMed  Google Scholar 

  60. Ramachandran C, Angelos KL, Walsh DA. Hormonal regulation of the phosphorylation of glycogen synthase in perfused rat heart. Effects of insulin, catecholamines, and glucagon. J Biol Chem. 1983;258(21):13377–83.

    Article  CAS  PubMed  Google Scholar 

  61. Gerich JE, Langlois M, Noacco C, Karam JH, Forsham PH. Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science. 1973;182(4108):171–3.

    Article  CAS  PubMed  Google Scholar 

  62. Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev. 2017;97(2):721–66.

    Article  PubMed  CAS  Google Scholar 

  63. Reaven GM, Chen YD, Golay A, Swislocki AL, Jaspan JB. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987;64(1):106–10.

    Article  CAS  PubMed  Google Scholar 

  64. Thorburn A, Litchfield A, Fabris S, Proietto J. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects. Diabetes Res Clin Pract. 1995;28(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  65. Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest. 1970;49(4):837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Voss TS, Vendelbo MH, Kampmann U, Pedersen SB, Nielsen TS, Johannsen M, et al. Substrate metabolism, hormone and cytokine levels and adipose tissue signalling in individuals with type 1 diabetes after insulin withdrawal and subsequent insulin therapy to model the initiating steps of ketoacidosis. Diabetologia. 2019;62(3):494–503.

    Article  CAS  PubMed  Google Scholar 

  67. Hare KJ, Vilsbøll T, Holst JJ, Knop FK. Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes. Am J Physiol Endocrinol Metab. 2010;298(4):E832–7.

    Article  CAS  PubMed  Google Scholar 

  68. Sherr J, Tsalikian E, Fox L, Buckingham B, Weinzimer S, Tamborlane WV, et al. Evolution of abnormal plasma glucagon responses to mixed-meal feedings in youth with type 1 diabetes during the first 2 years after diagnosis. Diabetes Care. 2014;37(6):1741–4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bengtsen MB, Støy J, Rittig NF, Voss TS, Magnusson NE, Svart MV, et al. A human randomized controlled trial comparing metabolic responses to single and repeated hypoglycemia in type 1 diabetes. J Clin Endocrinol Metab. 2020;105(12):e4699–e4711.

  70. Gerich JE, Langlois M, Noacco C, Lorenzi M, Karam JH, Korsham PH. Comparison of the suppressive effects of elevated plasma glucose and free fatty acid levels on glucagon secretion in normal and insulin-dependent diabetic subjects. Evidence for selective alpha-cell insensitivity to glucose in diabetes mellitus. J Clin Invest. 1976;58(2):320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bolli G, de Feo P, Compagnucci P, Cartechini MG, Angeletti G, Santeusanio F, et al. Abnormal glucose counterregulation in insulin-dependent diabetes mellitus. Interaction of anti-insulin antibodies and impaired glucagon and epinephrine secretion. Diabetes. 1983;32(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  72. Siafarikas A, Johnston RJ, Bulsara MK, O’Leary P, Jones TW, Davis EA. Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes. Diabetes Care. 2012;35(8):1757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Segel SA, Paramore DS, Cryer PE. Hypoglycemia-associated autonomic failure in advanced type 2 diabetes. Diabetes. 2002;51(3):724–33.

    Article  CAS  PubMed  Google Scholar 

  74. Guettet C, Rostaqui N, Navarro N, Lecuyer B, Mathe D. Effect of chronic glucagon administration on the metabolism of triacylglycerol-rich lipoproteins in rats fed a high sucrose diet. J Nutr. 1991;121(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  75. Rothfeld B, Margolis S, Varady A Jr, Karmen A. Effects of glucagon on cholesterol and triglyceride deposition in tissues. Biochem Med. 1974;10(2):122–5.

    Article  CAS  PubMed  Google Scholar 

  76. Sanchez A, Hubbard RW, Smit E, Hilton GF. Testing a mechanism of control in human cholesterol metabolism: relation of arginine and glycine to insulin and glucagon. Atherosclerosis. 1988;71(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  77. Richter WO, Robl H, Schwandt P. Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro. Peptides. 1989;10(2):333–5.

    Article  CAS  PubMed  Google Scholar 

  78. Vons C, Pegorier JP, Girard J, Kohl C, Ivanov MA, Franco D. Regulation of fatty-acid metabolism by pancreatic hormones in cultured human hepatocytes. Hepatology. 1991;13(6):1126–30.

    Article  CAS  PubMed  Google Scholar 

  79. Billington CJ, Bartness TJ, Briggs J, Levine AS, Morley JE. Glucagon stimulation of brown adipose tissue growth and thermogenesis. Am J Physiol. 1987;252(1 Pt 2):R160–5.

    CAS  PubMed  Google Scholar 

  80. Calles-Escandón J. Insulin dissociates hepatic glucose cycling and glucagon-induced thermogenesis in man. Metabolism. 1994;43(8):1000–5.

    Article  PubMed  Google Scholar 

  81. Nair KS. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab. 1987;64(5):896–901.

    Article  CAS  PubMed  Google Scholar 

  82. Filali-Zegzouti Y, Abdelmelek H, Rouanet JL, Cottet-Emard JM, Pequignot JM, Barré H. Role of catecholamines in glucagon-induced thermogenesis. J Neural Transm (Vienna). 2005;112(4):481–9.

    Article  CAS  Google Scholar 

  83. Heim T, Hull D. The effect of propranalol on the calorigenic response in brown adipose tissue of new-born rabbits to catecholamines, glucagon, corticotrophin and cold exposure. J Physiol. 1966;187(2):271–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Geary N, Le Sauter J, Noh U. Glucagon acts in the liver to control spontaneous meal size in rats. Am J Physiol. 1993;264(1 Pt 2):R116–22.

    CAS  PubMed  Google Scholar 

  85. Geary N, Smith GP. Selective hepatic vagotomy blocks pancreatic glucagon’s satiety effect. Physiol Behav. 1983;31(3):391–4.

    Article  CAS  PubMed  Google Scholar 

  86. Martin JR, Novin D, Vanderweele DA. Loss of glucagon suppression of feeding after vagotomy in rats. Am J Physiol. 1978;234(3):E314–8.

    CAS  PubMed  Google Scholar 

  87. Bagger JI. Physiological and pathophysiological aspects of incretin hormones and glucagon. Dan Med J. 2017;64(1).

  88. Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschöp MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 2010;6(12):689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Penick SB, Hinkle LE Jr. Depression of food intake induced in healthy subjects by glucagon. N Engl J Med. 1961;4(264):893–7.

    Article  Google Scholar 

  90. Stunkard AJ, Van Itallie TB, Reis BB. The mechanism of satiety: effect of glucagon on gastric hunger contractions in man. Proc Soc Exp Biol Med. 1955;89(2):258–61.

    Article  CAS  PubMed  Google Scholar 

  91. Valentine V, Newswanger B, Prestrelski S, Andre AD, Garibaldi M. Human factors usability and validation studies of a glucagon autoinjector in a simulated severe hypoglycemia rescue situation. diabetes Technol Ther. 2019;21(9):522–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Harris GAD, Sulway M, Wilkinson M. Glucagon administration—undervalued and undertaught. Practical Diabetes Int. 2001;18(1):22–5.

    Article  Google Scholar 

  93. Yale JF, Dulude H, Egeth M, Piche CA, Lafontaine M, Carballo D, et al. Faster use and fewer failures with needle-free nasal glucagon versus injectable glucagon in severe hypoglycemia rescue: a simulation study. Diabetes Technol Ther. 2017;19(7):423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Steiner SS, Li M, Hauser R, Pohl R. Stabilized glucagon formulation for bihormonal pump use. J Diabetes Sci Technol. 2010;4(6):1332–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Haymond MW, Liu J, Bispham J, Hickey A, McAuliffe-Fogarty AH. Use of glucagon in patients with type 1 diabetes. Clin Diabetes. 2019;37(2):162–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chung ST, Haymond MW. Minimizing morbidity of hypoglycemia in diabetes: a review of mini-dose glucagon. J Diabetes Sci Technol. 2015;9(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  97. Hasan KS, Kabbani M. Mini-dose glucagon is effective at diabetes camp. J Pediatr. 2004;144(6):834.

    Article  PubMed  Google Scholar 

  98. Haymond MW, DuBose SN, Rickels MR, Wolpert H, Shah VN, Sherr JL, et al. Efficacy and safety of mini-dose glucagon for treatment of nonsevere hypoglycemia in adults with type 1 diabetes. J Clin Endocrinol Metab. 2017;102(8):2994–3001.

    Article  PubMed  Google Scholar 

  99. Haymond MW, Redondo MJ, McKay S, Cummins MJ, Newswanger B, Kinzell J, et al. Nonaqueous, mini-dose glucagon for treatment of mild hypoglycemia in adults with type 1 diabetes: a dose-seeking study. Diabetes Care. 2016;39(3):465–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilson LM, Castle JR. Stable liquid glucagon: beyond emergency hypoglycemia rescue. J Diabetes Sci Technol. 2018;12(4):847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brink S, Laffel L, Likitmaskul S, Liu L, Maguire AM, Olsen B, et al. Sick day management in children and adolescents with diabetes. Pediatr Diabetes. 2009;10(Suppl 12):146–53.

    Article  PubMed  Google Scholar 

  102. Haymond MW, Schreiner B. Mini-dose glucagon rescue for hypoglycemia in children with type 1 diabetes. Diabetes Care. 2001;24(4):643–5.

    Article  CAS  PubMed  Google Scholar 

  103. Caputo N, Castle JR, Bergstrom CP, Carroll JM, Bakhtiani PA, Jackson MA, et al. Mechanisms of glucagon degradation at alkaline pH. Peptides. 2013;45:40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jackson MA, Caputo N, Castle JR, David LL, Roberts CT Jr, Ward WK. Stable liquid glucagon formulations for rescue treatment and bi-hormonal closed-loop pancreas. Curr Diab Rep. 2012;12(6):705–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Joshi AB, Rus E, Kirsch LE. The degradation pathways of glucagon in acidic solutions. Int J Pharm. 2000;203(1–2):115–25.

    Article  CAS  PubMed  Google Scholar 

  106. Pontiroli AE. Intranasal glucagon: a promising approach for treatment of severe hypoglycemia. J Diabetes Sci Technol. 2015;9(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  107. Pontiroli AE, Alberetto M, Pozza G. Intranasal glucagon raises blood glucose concentrations in healthy volunteers. Br Med J (Clin Res Ed). 1983;287(6390):462–3.

    Article  CAS  Google Scholar 

  108. Pontiroli AE, Calderara A, Pajetta E, Alberetto M, Pozza G. Intranasal glucagon as remedy for hypoglycemia. Studies in healthy subjects and type I diabetic patients. Diabetes Care. 1989;12(9):604–8.

    Article  CAS  PubMed  Google Scholar 

  109. Lilly. Lilly acquires phase III intranasal glucagon from locemia solutions. 2015 October 9, 2015 [cited 2022 August 2]; Available from: https://investor.lilly.com/news-releases/news-release-details/lilly-acquires-phase-iii-intranasal-glucagon-locemia-solutions.

  110. Guzman CB, Dulude H, Piche C, Rufiange M, Sadoune AA, Rampakakis E, et al. Effects of common cold and concomitant administration of nasal decongestant on the pharmacokinetics and pharmacodynamics of nasal glucagon in otherwise healthy participants: a randomized clinical trial. Diabetes Obes Metab. 2018;20(3):646–53.

    Article  CAS  PubMed  Google Scholar 

  111. Rickels MR, Ruedy KJ, Foster NC, Piche CA, Dulude H, Sherr JL, et al. Intranasal glucagon for treatment of insulin-induced hypoglycemia in adults with type 1 diabetes: a randomized crossover noninferiority study. Diabetes Care. 2016;39(2):264–70.

    Article  CAS  PubMed  Google Scholar 

  112. Reno FE, Normand P, McInally K, Silo S, Stotland P, Triest M, et al. A novel nasal powder formulation of glucagon: toxicology studies in animal models. BMC Pharmacol Toxicol. 2015;26(16):29.

    Article  CAS  Google Scholar 

  113. Blair HA. Dasiglucagon: first approval. Drugs. 2021;81(9):1115–20.

    Article  CAS  PubMed  Google Scholar 

  114. Xu B, Tang G, Chen Z. Dasiglucagon: an effective medicine for severe hypoglycemia. Eur J Clin Pharmacol. 2021;77(12):1783–90.

    Article  CAS  PubMed  Google Scholar 

  115. Pharma Z. Dasiglucagon - A novel glucagon analog, Phase II update. 2017 [cited 2022 March 24]; https://static1.squarespace.com/static/58983777d1758e28995640b4/t/5912d3251e5b6cb374772105/1494405933418/TIDES. Accessed 8 Feb 2022.

  116. Macchi F WC, Lundholt BK. 512. Dasiglucagon is a novel stable glucagon analogue with fast glucose response following subcutaneous injection in hypoglycaemic rats. Diabetologia. 2022;63:1–485.

  117. Castle JR, Elander M. Long-term safety and tolerability of dasiglucagon, a stable-in-solution glucagon analogue. Diabetes Technol Ther. 2019;21(2):94–6.

    Article  PubMed  Google Scholar 

  118. Hovelmann U, Bysted BV, Mouritzen U, Macchi F, Lamers D, Kronshage B, et al. Pharmacokinetic and pharmacodynamic characteristics of dasiglucagon, a novel soluble and stable glucagon analog. Diabetes Care. 2018;41(3):531–7.

    Article  PubMed  CAS  Google Scholar 

  119. Hovelmann U, Olsen MB, Mouritzen U, Lamers D, Kronshage B, Heise T. Low doses of dasiglucagon consistently increase plasma glucose levels from hypoglycaemia and euglycaemia in people with type 1 diabetes mellitus. Diabetes Obes Metab. 2019;21(3):601–10.

    Article  PubMed  CAS  Google Scholar 

  120. Trial to Confirm the Clinical Efficacy and Safety of Dasiglucagon in the Treatment of Hypoglycemia in Subjects With T1DM. [cited 2022 March 24]; https://clinicaltrials.gov/ct2/show/NCT03688711

  121. Pieber TR, Aronson R, Hovelmann U, Willard J, Plum-Morschel L, Knudsen KM, et al. Dasiglucagon-A next-generation glucagon analog for rapid and effective treatment of severe hypoglycemia: results of phase 3 randomized double-blind clinical trial. Diabetes Care. 2021;44(6):1361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Battelino T, Tehranchi R, Bailey T, Dovc K, Melgaard A, Yager Stone J, et al. Dasiglucagon, a next-generation ready-to-use glucagon analog, for treatment of severe hypoglycemia in children and adolescents with type 1 diabetes: Results of a phase 3, randomized controlled trial. Pediatr Diabetes. 2021;22(5):734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Newswanger B, Ammons S, Phadnis N, Ward WK, Castle J, Campbell RW, et al. Development of a highly stable, nonaqueous glucagon formulation for delivery via infusion pump systems. J Diabetes Sci Technol. 2015;9(1):24–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Castle JR, Youssef JE, Branigan D, Newswanger B, Strange P, Cummins M, et al. Comparative pharmacokinetic/pharmacodynamic study of liquid stable glucagon versus lyophilized glucagon in type 1 diabetes subjects. J Diabetes Sci Technol. 2016;10(5):1101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Adocia. BIOCHAPERONE® [cited 2022 March 26]; https://www.adocia.com/technology/biochaperone-technology-2/#:~:text=Adocia%20designed%20the%20BioChaperone%C2%AE,degradation%20and%20enhances%20their%20performance. Accessed 8 Feb 2022.

  126. Glezer; S, Hovelmann; U, Teng; S, Lamers; D, Odoul; M, Correia; J, et al. BioChaperone Glucagon (BCG), a stable ready-to-use liquid glucagon formulation, is well tolerated and quickly restores euglycemia after insulin-induced hypoglycemia. American Diabetes Association; 2018;67(Supplement_1).

  127. Adocia. Pipeline. [cited 2022 March 26]; https://www.adocia.com/products-pipeline/. Accessed 8 Feb 2022.

  128. Steineck IIK, Ranjan A, Schmidt S, Clausen TR, Holst JJ, Norgaard K. Preserved glucose response to low-dose glucagon after exercise in insulin-pump-treated individuals with type 1 diabetes: a randomised crossover study. Diabetologia. 2019;62(4):582–92.

  129. Rickels MR, DuBose SN, Toschi E, Beck RW, Verdejo AS, Wolpert H, et al. Mini-dose glucagon as a novel approach to prevent exercise-induced hypoglycemia in type 1 diabetes. Diabetes Care. 2018;41(9):1909–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wilson LM, Jacobs PG, Ramsey KL, Resalat N, Reddy R, Branigan D, et al. Dual-hormone closed-loop system using a liquid stable glucagon formulation versus insulin-only closed-loop system compared with a predictive low glucose suspend system: an open-label, outpatient, single-center, crossover, randomized controlled trial. Diabetes Care. 2020.

  131. Bekiari E, Kitsios K, Thabit H, Tauschmann M, Athanasiadou E, Karagiannis T, et al. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ. 2018;18(361): k1310.

    Article  Google Scholar 

  132. Castellanos LE, Balliro CA, Sherwood JS, Jafri R, Hillard MA, Greaux E, et al. Performance of the insulin-only iLet bionic pancreas and the bihormonal iLet using dasiglucagon in adults with type 1 diabetes in a home-use setting. Diabetes Care. 2021;44(6):e118–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hawkes CP, Lado JJ, Givler S, De Leon DD. The effect of continuous intravenous glucagon on glucose requirements in infants with congenital hyperinsulinism. JIMD Rep. 2019;45:45–50.

    Article  PubMed  Google Scholar 

  134. Open-label Trial Evaluating Efficacy and safety of dasiglucagon in children with congenital hyperinsulinism. [cited 2022 March 26]; https://clinicaltrials.gov/ct2/show/NCT03777176

  135. CSI-Glucagon for Prevention of Hypoglycemia in Children With Congenital Hyperinsulinism. [cited 2022 March 26]; https://clinicaltrials.gov/ct2/show/NCT02937558

  136. Zealand Pharma announces data from the first phase 3-trial with dasiglucagon in Congenital Hyperinsulinism (CHI). 2020 December 15, 2020 [cited 2022 August 2]; Available from: https://www.globenewswire.com/news-release/2020/12/15/2145350/0/en/Zealand-Pharma-announces-data-from-the-first-phase-3-trial-with-dasiglucagon-in-Congenital-Hyperinsulinism-CHI.html.

  137. Salehi M, Vella A, McLaughlin T, Patti ME. Hypoglycemia after gastric bypass surgery: current concepts and controversies. J Clin Endocrinol Metab. 2018;103(8):2815–26.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sheehan A, Patti ME. Hypoglycemia after upper gastrointestinal surgery: clinical approach to assessment, diagnosis, and treatment. Diabetes Metab Syndr Obes. 2020;13:4469–82.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Fischer LE, Wolfe BM, Fino N, Elman MR, Flum DR, Mitchell JE, et al. Postbariatric hypoglycemia: symptom patterns and associated risk factors in the Longitudinal Assessment of Bariatric Surgery study. Surg Obes Relat Dis. 2021;17(10):1787–98.

    Article  PubMed  Google Scholar 

  140. Laguna Sanz AJ, Mulla CM, Fowler KM, Cloutier E, Goldfine AB, Newswanger B, et al. Design and clinical evaluation of a novel low-glucose prediction algorithm with mini-dose stable glucagon delivery in post-bariatric hypoglycemia. Diabetes Technol Ther. 2018;20(2):127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nielsen CK, Ohrstrom CC, Kielgast UL, Hansen DL, Hartmann B, Holst JJ, et al. Dasiglucagon effectively mitigates postbariatric postprandial hypoglycemia: a randomized, double-blind, placebo-controlled, crossover trial. Diabetes Care. 2022;45(6):1476–1481.

  142. Mulla CM, Zavitsanou S, Laguna Sanz AJ, Pober D, Richardson L, Walcott P, et al. A Randomized, Placebo-Controlled Double-Blind Trial of a Closed-Loop Glucagon System for Postbariatric Hypoglycemia. J Clin Endocrinol Metab. 2020;105(4):e1260–71.

    Article  Google Scholar 

  143. Pharma Z. Dasiglucagon for Bi-Hormonal Artificial Pancreas Systems [cited 2022 March 26]. https://www.zealandpharma.com/dasiglucagon-pump#:~:text=In%202016%2C%20Zealand%20entered%20into,world's%20first%20autonomous%20bionic%20pancreas. Accessed 8 Feb 2022.

  144. Nielsen CK, Oehrstroem C, Kielgast U, Hansen DL, Lund A, Vilsboll T, et al. 10-LB: Dasiglucagon ameliorates postprandial hypoglycemia after Roux-en-y gastric bypass. American Diabetes Assoication; 2020: Diabetes; 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah M. Wilson.

Ethics declarations

Funding

LMW’s time to write this manuscript was supported by National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK129382-01) and the Oregon Health and Science University Wheels Up program.

Conflicts of Interest

LHS has nothing to disclose. LMW participated in completion and publication of a study that was sponsored by Xeris Pharmaceuticals via subaward from JDRF. LMW has received research supplies from Dexcom.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contribution

LHS and LMW contributed to the design of this review, literature search and writing and revision of the manuscript. All authors take responsibility for the integrity of the work and have given approval for this manuscript to be published.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Story, L.H., Wilson, L.M. New Developments in Glucagon Treatment for Hypoglycemia. Drugs 82, 1179–1191 (2022). https://doi.org/10.1007/s40265-022-01754-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-022-01754-8

Navigation