Skip to main content
Log in

Spondyloarthropathy in Inflammatory Bowel Disease: From Pathophysiology to Pharmacological Targets

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Spondyloarthritis (SpA) represents one of the most frequent extraintestinal manifestations of inflammatory bowel disease (IBD). Evidence of shared genetic and molecular pathways underlying both diseases is emerging, which has led to rational approaches when treating patients with concomitant diseases. Clinical efficacy of tumor necrosis factor (TNF) antagonists has been ascertained over the years, and they currently represent the cornerstone of treatment in patients with IBD and SpA, but the therapeutic armamentarium in these cases has been recently expanded. Evidence for vedolizumab is controversial, as it was associated both with improvement and development of arthralgias, while ustekinumab, the first anti-interleukin 12/23 (IL-12/23) approved for IBD, has demonstrated good efficacy, especially in peripheral arthritis, and more IL-23 inhibitors are being developed in IBD. Tofacitinib was the first Janus kinase (JAK) inhibitor to be approved in IBD, and as it demonstrated efficacy in treating ankylosing spondylitis, it may represent a good choice in axial arthritis, while more selective JAK inhibitors are yet to be approved. Unexpectedly, the first anti-IL17 that was studied in IBD (secukinumab) has shown not to be effective in treating IBD, and the role of anti-IL17 drugs in these diseases needs further investigation. Therefore, as availability of biologics and small molecules is increasing, their positioning in clinical practice is becoming more and more challenging, and multidisciplinary management needs to be implemented in both research and clinical settings in order to enhance early recognition of SpA in IBD patients, optimize treatment and ultimately improve the patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magro F, Gionchetti P, Eliakim R, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J Crohns Colitis. 2017;11(6):649–70. https://doi.org/10.1093/ecco-jcc/jjx008.

    Article  PubMed  Google Scholar 

  2. Gionchetti P, Dignass A, Danese S, et al. 3rd European evidence-based consensus on the diagnosis and management of crohn’s disease 2016: Part 2: surgical management and special situations. J Crohns Colitis. 2017;11(2):135–49. https://doi.org/10.1093/ecco-jcc/jjw169.

    Article  PubMed  Google Scholar 

  3. Bourikas LA, Papadakis KA. Musculoskeletal manifestations of inflammatory bowel disease. Inflamm Bowel Dis. 2009;15(12):1915–24. https://doi.org/10.1002/ibd.20942.

    Article  PubMed  Google Scholar 

  4. Algaba A, Guerra I, Ricart E, et al. Extraintestinal manifestations in patients with inflammatory bowel disease: study based on the ENEIDA registry. Dig Dis Sci. 2021;66(6):2014–23. https://doi.org/10.1007/s10620-020-06424-x.

    Article  PubMed  Google Scholar 

  5. Di Jiang C, Raine T. IBD considerations in spondyloarthritis. Ther Adv Musculoskelet Dis. 2020. https://doi.org/10.1177/1759720X20939410.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009;68:1–44. https://doi.org/10.1136/ard.2008.104018.

    Article  Google Scholar 

  7. Ashrafi M, Ermann J, Weisman MH. Spondyloarthritis evolution: what is in your history? Curr Opin Rheumatol. 2020;32(4):321–9. https://doi.org/10.1097/BOR.0000000000000712.

    Article  PubMed  Google Scholar 

  8. Lipton S, Deodhar A. The new ASAS classification criteria for axial and peripheral spondyloarthritis: Promises and pitfalls. Int J Clin Rheumatol. 2012;7(6):675–82. https://doi.org/10.2217/ijr.12.61.

    Article  CAS  Google Scholar 

  9. Robinson PC, van der Linden S, Khan MA, et al. Axial spondyloarthritis: concept, construct, classification and implications for therapy. Nat Rev Rheumatol. 2021;17:109–18. https://doi.org/10.1038/s41584-020-00552-4.

    Article  PubMed  Google Scholar 

  10. Karreman MC, Luime JJ, Hazes JMW, Weel AEAM. The prevalence and incidence of axial and peripheral spondyloarthritis in inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2017;11(5):631–42. https://doi.org/10.1093/ecco-jcc/jjw199.

    Article  PubMed  Google Scholar 

  11. Salvarani C, Fries W. Clinical features and epidemiology of spondyloarthritides associated with inflammatory bowel disease. World J Gastroenterol. 2009;15(20):2449–55. https://doi.org/10.3748/wjg.15.2449.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Orchard TR, Wordsworth BP, Jewell DP. Peripheral arthropathies in inflammatory bowel disease: their articular distribution and natural history. Gut. 1998;42(3):387–91. https://doi.org/10.1136/gut.42.3.387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stolwijk C, van Tubergen A, Castillo-Ortiz JD, Boonen A. Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(1):65–73. https://doi.org/10.1136/annrheumdis-2013-203582.

    Article  PubMed  Google Scholar 

  14. de Winter JJ, van Mens LJ, van der Heijde D, Landewé R, Baeten DL. Prevalence of peripheral and extra-articular disease in ankylosing spondylitis versus non-radiographic axial spondyloarthritis: a meta-analysis. Arthritis Res Ther. 2016;18(1):196. https://doi.org/10.1186/s13075-016-1093-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fragoulis GE, Liava C, Daoussis D, Akriviadis E, Garyfallos A, Dimitroulas T. Inflammatory bowel diseases and spondyloarthropathies: From pathogenesis to treatment. World J Gastroenterol. 2019;25(18):2162–76. https://doi.org/10.3748/wjg.v25.i18.2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cypers H, Varkas G, Beeckman S, et al. Elevated calprotectin levels reveal bowel inflammation in spondyloarthritis. Ann Rheum Dis. 2016;75(7):1357–62. https://doi.org/10.1136/annrheumdis-2015-208025.

    Article  CAS  PubMed  Google Scholar 

  17. Leirisalo-Repo M, Turunen U, Stenman S, Helenius P, Seppälä K. High frequency of silent inflammatory bowel disease in spondylarthropathy. Arthritis Rheum. 1994;37(1):23–31. https://doi.org/10.1002/art.1780370105.

    Article  CAS  PubMed  Google Scholar 

  18. De Vos M, Mielants H, Cuvelier C, Elewaut A, Veys E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology. 1996;110(6):1696–703. https://doi.org/10.1053/gast.1996.v110.pm8964393.

    Article  PubMed  Google Scholar 

  19. Ashrafi M, Kuhn KA, Weisman MH. The arthritis connection to inflammatory bowel disease (IBD): why has it taken so long to understand it? RMD Open. 2021;7(1): e001558. https://doi.org/10.1136/rmdopen-2020-001558.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thjodleifsson B, Geirsson AJ, Björnsson S, Bjarnason I. A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland. Arthritis Rheum. 2007;56(8):2633–9. https://doi.org/10.1002/art.22812.

    Article  PubMed  Google Scholar 

  21. De Vos M. Joint involvement associated with inflammatory bowel disease. Dig Dis. 2009;27(4):511–5. https://doi.org/10.1159/000233290.

    Article  PubMed  Google Scholar 

  22. Danoy P, Pryce K, Hadler J, et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet. 2011. https://doi.org/10.1371/annotation/0ee7d13b-c55e-4be6-ab3e-8e8df5bb2c97.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang X, Li M, Wang L, Hu Z, Zhang Y, Yang Q. Association of KIF21B genetic polymorphisms with ankylosing spondylitis in a Chinese Han population of Shandong Province. Clin Rheumatol. 2015;34(10):1729–36. https://doi.org/10.1007/s10067-014-2761-5.

    Article  PubMed  Google Scholar 

  24. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62. https://doi.org/10.1038/ng.175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellinghaus D, Jostins L, Spain SL, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–8. https://doi.org/10.1038/ng.3528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gracey E, Vereecke L, McGovern D, et al. Revisiting the gut-joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol. 2020;16(8):415–33. https://doi.org/10.1038/s41584-020-0454-9.

    Article  PubMed  Google Scholar 

  27. Ciccia F, Guggino G, Rizzo A, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis. 2017;76(6):1123–32. https://doi.org/10.1136/annrheumdis-2016-210000.

    Article  CAS  PubMed  Google Scholar 

  28. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104(4):487–501. https://doi.org/10.1016/s0092-8674(01)00237-9.

    Article  CAS  PubMed  Google Scholar 

  29. MacEwan DJ. TNF ligands and receptors–a matter of life and death. Br J Pharmacol. 2002;135(4):855–75. https://doi.org/10.1038/sj.bjp.0704549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schulzke JD, Bojarski C, Zeissig S, Heller F, Gitter AH, Fromm M. Disrupted barrier function through epithelial cell apoptosis. Ann N Y Acad Sci. 2006;1072:288–99. https://doi.org/10.1196/annals.1326.027.

    Article  CAS  PubMed  Google Scholar 

  31. Zeissig S, Bürgel N, Günzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72. https://doi.org/10.1136/gut.2006.094375.

    Article  CAS  PubMed  Google Scholar 

  32. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999;10(3):387–98. https://doi.org/10.1016/s1074-7613(00)80038-2.

    Article  CAS  PubMed  Google Scholar 

  33. Neurath MF, Fuss I, Pasparakis M, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27(7):1743–50. https://doi.org/10.1002/eji.1830270722.

    Article  CAS  PubMed  Google Scholar 

  34. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994;1(7):553–62. https://doi.org/10.1016/1074-7613(94)90045-0.

    Article  CAS  PubMed  Google Scholar 

  35. Ogawa E, Sato Y, Minagawa A, Okuyama R. Pathogenesis of psoriasis and development of treatment. J Dermatol. 2018;45(3):264–72. https://doi.org/10.1111/1346-8138.14139.

    Article  CAS  PubMed  Google Scholar 

  36. Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 anterior uveitis: immunology and immunopathology. Ocul Immunol Inflamm. 2016;24(4):450–9. https://doi.org/10.3109/09273948.2016.1158283.

    Article  CAS  PubMed  Google Scholar 

  37. Braun J, Bollow M, Neure L, et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 1995;38(4):499–505. https://doi.org/10.1002/art.1780380407.

    Article  CAS  PubMed  Google Scholar 

  38. Lata M, Hettinghouse AS, Liu CJ. Targeting tumor necrosis factor receptors in ankylosing spondylitis. Ann N Y Acad Sci. 2019;1442(1):5–16. https://doi.org/10.1111/nyas.13933.

    Article  PubMed  Google Scholar 

  39. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10(1):18–26. https://doi.org/10.1038/mi.2016.75.

    Article  CAS  PubMed  Google Scholar 

  40. Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76:1614–22.

    Article  CAS  PubMed  Google Scholar 

  41. Tito RY, Cypers H, Joossens M, et al. Brief report: Dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 2017;69:114–21.

    Article  CAS  PubMed  Google Scholar 

  42. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.

    Article  CAS  PubMed  Google Scholar 

  43. Andoh A, Kuzuoka H, Tsujikawa T, et al. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. J Gastroenterol. 2012;47(12):1298–307. https://doi.org/10.1007/s00535-012-0605-0.

    Article  PubMed  Google Scholar 

  44. Huda-Faujan N, Abdulamir AS, Fatimah AB, et al. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010;4:53–8. https://doi.org/10.2174/1874091X01004010053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;13(2):17004.

    Article  CAS  Google Scholar 

  46. Ciccia F, Guggino G, Zeng M, et al. Proinflammatory CX3CR1+CD59+ tumor necrosis factor–like molecule 1A+Interleukin-23+ monocytes are expanded in patients with ankylosing spondylitis and modulate innate lymphoid cell 3 immune functions. Arthritis Rheum. 2018;70(12):2003–13.

    Article  CAS  Google Scholar 

  47. Sherlock JP, Cua DJ. Interleukin-23 in perspective. Rheumatology. 2021;60(4):1–3. https://doi.org/10.1093/rheumatology/keab461.

    Article  CAS  Google Scholar 

  48. Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, Porcasi R, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60:955–65. https://doi.org/10.1002/art.24389.

    Article  CAS  PubMed  Google Scholar 

  49. Salmi M, Jalkanen S. Human leukocyte subpopulations from inflamed gut bind to joint vasculature using distinct sets of adhesion molecules. J Immunol. 2001;166(7):4650–7. https://doi.org/10.4049/jimmunol.166.7.4650.

    Article  CAS  PubMed  Google Scholar 

  50. Norman E, Lefferts A, Kuhn K. Gut-joint T cell trafficking in a model of bacteria-driven murine IBD-SpA [abstract]. Arthritis Rheumatol. 2018;70:1828.

    Google Scholar 

  51. Evans JM, McMahon AD, Murray FE, McDevitt DG, MacDonald TM. Non-steroidal anti-inflammatory drugs are associated with emergency admission to hospital for colitis due to inflammatory bowel disease. Gut. 1997;40(5):619–22. https://doi.org/10.1136/gut.40.5.619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bonner GF, Fakhri A, Vennamaneni SR. A long-term cohort study of nonsteroidal anti-inflammatory drug use and disease activity in outpatients with inflammatory bowel disease. Inflamm Bowel Dis. 2004;10(6):751–7. https://doi.org/10.1097/00054725-200411000-00009.

    Article  PubMed  Google Scholar 

  53. Sandborn WJ, Stenson WF, Brynskov J, et al. Safety of celecoxib in patients with ulcerative colitis in remission: a randomized, placebo-controlled, pilot study. Clin Gastroenterol Hepatol. 2006;4(2):203–11. https://doi.org/10.1016/j.cgh.2005.12.002.

    Article  CAS  PubMed  Google Scholar 

  54. El Miedany Y, Youssef S, Ahmed I, El Gaafary M. The gastrointestinal safety and effect on disease activity of etoricoxib, a selective cox-2 inhibitor in inflammatory bowel diseases. Am J Gastroenterol. 2006;101(2):311–7. https://doi.org/10.1111/j.1572-0241.2006.00384.x.

    Article  CAS  PubMed  Google Scholar 

  55. Pouillon L, Bossuyt P, Vanderstukken J, et al. Management of patients with inflammatory bowel disease and spondyloarthritis. Expert Rev Clin Pharmacol. 2017;10(12):1363–74. https://doi.org/10.1080/17512433.2017.1377609.

    Article  CAS  PubMed  Google Scholar 

  56. van der Heijde D, Ramiro S, Landewé R, et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis. 2017;76(6):978–91. https://doi.org/10.1136/annrheumdis-2016-210770.

    Article  PubMed  Google Scholar 

  57. Braun J, Zochling J, Baraliakos X, et al. Efficacy of sulfasalazine in patients with inflammatory back pain due to undifferentiated spondyloarthritis and early ankylosing spondylitis: a multicentre randomised controlled trial. Ann Rheum Dis. 2006;65(9):1147–53. https://doi.org/10.1136/ard.2006.052878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen J, Lin S, Liu C. Sulfasalazine for ankylosing spondylitis. Cochrane Database Syst Rev. 2014;11:4800. https://doi.org/10.1002/14651858.CD004800.pub3.

    Article  Google Scholar 

  59. Dougados M, Vam der Linden S, Leirisalo-Repo M, et al. Sulfasalazine in the treatment of spondylarthropathy. A randomized, multicenter, double-blind, placebo-controlled study. Arthritis Rheum. 1995;38:618–27. https://doi.org/10.1002/art.1780380507.

    Article  CAS  PubMed  Google Scholar 

  60. Baron JH, Connell AM, Lennard-Jones JE, et al. Sulphasalazine and salicylazosulphadimidine in ulcerative colitis. Lancet. 1962;1:1094–6.

    Article  CAS  PubMed  Google Scholar 

  61. Dick AP, Carpenter RB, Petrie A. Controlled trial of sulphasalazine in the treatment of ulcerative colitis. Br Med J. 1964;5:437–42.

    CAS  Google Scholar 

  62. Dissanayake AS, Truelove SC. A controlled therapeutic trial of long-term maintenance treatment of ulcerative colitis with sulphazalazine (Salazopyrin). Gut. 1973;14:923–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Misiewitz LJJ, Connell AM, Baron JH, et al. Controlled trial of sulfasalazine in maintenance therapy for ulcerative colitis. Lancet. 1965;1:185–8.

    Article  Google Scholar 

  64. Ko CW, Singh S, Feuerstein JD, Falck-Ytter C, Falck-Ytter Y, Cross RK. American Gastroenterological Association Institute Clinical Guidelines Committee AGA Clinical Practice Guidelines on the Management of Mild-to-Moderate Ulcerative Colitis. Gastroenterology. 2019;156(3):748–64.

    Article  PubMed  Google Scholar 

  65. Feagan BG, Rochon J, Fedorak RN, Irvine EJ, Wild G, Sutherland L, Steinhart AH, Greenberg GR, Gillies R, Hopkins M, et al. Methotrexate for the treatment of Crohn’s disease The North American Crohn’s Study Group Investigators. N Engl J Med. 1995;332(5):292–7. https://doi.org/10.1056/NEJM199502023320503.

    Article  CAS  PubMed  Google Scholar 

  66. Herfarth H, Barnes EL, Valentine JF, et al. Methotrexate is not superior to placebo in maintaining steroid-free response or remission in ulcerative colitis. Gastroenterology. 2018;155(4):1098–108. https://doi.org/10.1053/j.gastro.2018.06.046.

    Article  CAS  PubMed  Google Scholar 

  67. Macaluso FS, Renna S, Cottone M, Orlando A. The METEOR trial: the burial of methotrexate in ulcerative colitis? Gastroenterology. 2016;151(1):211–2. https://doi.org/10.1053/j.gastro.2016.02.085.

    Article  PubMed  Google Scholar 

  68. Olivieri I, Cantini F, Castiglione F, et al. Italian Expert Panel on the management of patients with coexisting spondyloarthritis and inflammatory bowel disease. Autoimmun Rev. 2014;13(8):822–30. https://doi.org/10.1016/j.autrev.2014.04.003.

    Article  PubMed  Google Scholar 

  69. Brandt J, Haibel H, Reddig J, et al. Successful short term treatment of severe undifferentiated spondyloarthropathy with the anti-tumor necrosis factor-alpha monoclonal antibody infliximab. J Rheumatol. 2002;29:118–22.

    CAS  PubMed  Google Scholar 

  70. Raun J, Baraliakos X, Brandt J, Listing J, Zink A, Alten R, Burmester G, Gromnica-Ihle E, Kellner H, Schneider M, Sörensen H, Zeidler H, Sieper J. Persistent clinical response to the anti-TNF-alpha antibody infliximab in patients with ankylosing spondylitis over 3 years. Rheumatology (Oxford). 2005;44:670–6. https://doi.org/10.1093/rheumatology/keh584.

    Article  CAS  Google Scholar 

  71. Baeten D, Van den BF, Kruithof E, Mielants H, Veys EM. Infliximab in patients who have spondyloarthropathy: clinical efficacy, safety, and biological immunomodulation. Rheum Dis Clin North Am. 2003;29:463–79.

    Article  PubMed  Google Scholar 

  72. Brandt J, Khariouzov A, Listing J, Haibel H, Sorensen H, Rudwaleit M, Sieper J, Braun J. Successful short term treatment of patients with severe undifferentiated spondyloarthritis with the anti-tumor necrosis factor-alpha fusion receptor protein etanercept. J Rheumatol. 2004;31:531–8.

    CAS  PubMed  Google Scholar 

  73. Billmeier U, Dieterich W, Neurath MF, Atreya R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol. 2016;22(42):9300–13. https://doi.org/10.3748/wjg.v22.i42.9300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Perrier C, de Hertogh G, Cremer J, et al. Neutralization of membrane TNF, but not soluble TNF, is crucial for the treatment of experimental colitis. Inflamm Bowel Dis. 2013;19(2):246–53. https://doi.org/10.1002/ibd.23023.

    Article  PubMed  Google Scholar 

  75. Eder P, Korybalska K, Łykowska-Szuber L, et al. An increase in serum tumour necrosis factor-α during anti-tumour necrosis factor-α therapy for Crohn’s disease - A paradox or a predictive index? Dig Liver Dis. 2016;48(10):1168–71. https://doi.org/10.1016/j.dld.2016.06.038.

    Article  CAS  PubMed  Google Scholar 

  76. Braun J, van der Horst-Bruinsma IE, Huang F, Burgos-Vargas R, Vlahos B, Koenig AS, Freundlich B. Clinical efficacy and safety of etanercept versus sulfasalazine in patients with ankylosing spondylitis: a randomized, double-blind trial. Arthritis Rheum. 2011;63:1543–51.

    Article  CAS  PubMed  Google Scholar 

  77. Sandborn WJ, Hanauer SB, Katz S, et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2001;121:1088–94.

    Article  CAS  PubMed  Google Scholar 

  78. Toussirot E, Houvenagel E, Goeb V, et al. Development of inflammatory bowel disease during anti-TNF-alpha therapy for inflammatory rheumatic disease: a nationwide series. Joint Bone Spine. 2012;79:457–63.

    Article  PubMed  Google Scholar 

  79. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9. https://doi.org/10.1016/S0140-6736(02)08512-4.

    Article  CAS  PubMed  Google Scholar 

  80. Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997;337(15):1029–35. https://doi.org/10.1056/NEJM199710093371502.

    Article  CAS  PubMed  Google Scholar 

  81. Hanauer SB, Sandborn WJ, Rutgeerts P, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006;130(2):323–591. https://doi.org/10.1053/j.gastro.2005.11.030.

    Article  CAS  PubMed  Google Scholar 

  82. Colombel JF, Sandborn WJ, Rutgeerts P, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007;132(1):52–65. https://doi.org/10.1053/j.gastro.2006.11.041.

    Article  CAS  PubMed  Google Scholar 

  83. Sandborn WJ, Rutgeerts P, Enns R, et al. Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial. Ann Intern Med. 2007;146(12):829–38. https://doi.org/10.7326/0003-4819-146-12-200706190-00159.

    Article  PubMed  Google Scholar 

  84. Schreiber S, Rutgeerts P, Fedorak RN, et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology. 2005;129(3):807–18. https://doi.org/10.1053/j.gastro.2005.06.064.

    Article  CAS  PubMed  Google Scholar 

  85. Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353(23):2462–76. https://doi.org/10.1056/NEJMoa050516.

    Article  CAS  PubMed  Google Scholar 

  86. Reinisch W, Sandborn WJ, Hommes DW, et al. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut. 2011;60(6):780–7. https://doi.org/10.1136/gut.2010.221127.

    Article  CAS  PubMed  Google Scholar 

  87. Sandborn WJ, van Assche G, Reinisch W, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142(2):257–65. https://doi.org/10.1053/j.gastro.2011.10.032.

    Article  CAS  PubMed  Google Scholar 

  88. Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):85-e15. https://doi.org/10.1053/j.gastro.2013.05.048.

    Article  CAS  PubMed  Google Scholar 

  89. Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):96-109.e1. https://doi.org/10.1053/j.gastro.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  90. Braun J, Brandt J, Listing J, et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet. 2002;359(9313):1187–93. https://doi.org/10.1016/s0140-6736(02)08215-6.

    Article  CAS  PubMed  Google Scholar 

  91. van der Heijde D, Kivitz A, Schiff MH, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2006;54(7):2136–46. https://doi.org/10.1002/art.21913.

    Article  CAS  PubMed  Google Scholar 

  92. Inman RD, Davis JC Jr, Heijde D, et al. Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum. 2008;58(11):3402–12. https://doi.org/10.1002/art.23969.

    Article  CAS  PubMed  Google Scholar 

  93. Vavricka SR, Gubler M, Gantenbein C, et al. Anti-TNF treatment for extraintestinal manifestations of inflammatory bowel disease in the Swiss IBD cohort study. Inflamm Bowel Dis. 2017;23(7):1174–81. https://doi.org/10.1097/MIB.0000000000001109.

    Article  PubMed  Google Scholar 

  94. Rahier JF. Prevention and management of infectious complications in IBD. Dig Dis. 2012;30(4):408–14. https://doi.org/10.1159/000338143.

    Article  PubMed  Google Scholar 

  95. Beaugerie L, Rahier JF, Kirchgesner J. Predicting, preventing, and managing treatment-related complications in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(6):1324-1335.e2. https://doi.org/10.1016/j.cgh.2020.02.009.

    Article  CAS  PubMed  Google Scholar 

  96. Tillack C, Ehmann LM, Friedrich M, et al. Anti-TNF antibody-induced psoriasiform skin lesions in patients with inflammatory bowel disease are characterised by interferon-gamma-expressing Th1 cells and IL-17A/ IL-22-expressing Th17 cells and respond to anti-IL12/IL-23 antibody treatment. Gut. 2014;63:567–77.

    Article  CAS  PubMed  Google Scholar 

  97. Vermeire S, Loftus EV Jr, Colombel JF, et al. Long-term efficacy of vedolizumab for crohn’s disease. J Crohns Colitis. 2017;11(4):412–24.

    PubMed  Google Scholar 

  98. Loftus EV Jr, Colombel JF, Feagan BG, et al. Long-term efficacy of vedolizumab for ulcerative colitis. J Crohns Colitis. 2017;11(4):400–11.

    PubMed  Google Scholar 

  99. Tadbiri S, et al. Impact of vedolizumab therapy on extra-intestinal manifestations in patients with inflammatory bowel disease: a multicentre cohort study nested in the OBSERV-IBD cohort. Aliment Pharmacol Ther. 2018;47:485–93.

    Article  CAS  PubMed  Google Scholar 

  100. Macaluso FS, Orlando R, Fries W, Scolaro M, Magnano A, Pluchino D, Cappello M, Morreale GC, Siringo S, Privitera AC, Ferracane C, Belluardo N, Alberghina N, Ventimiglia M, Rizzuto G, Renna S, Cottone M, Orlando A. The real-world effectiveness of vedolizumab on intestinal and articular outcomes in inflammatory bowel diseases. Dig Liver Dis. 2018;50(7):675–81. https://doi.org/10.1016/j.dld.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  101. Feagan BG, Sandborn WJ, Colombel JF, et al. Incidence of arthritis/arthralgia in inflammatory bowel disease with long-term vedolizumab treatment: post hoc analyses of the GEMINI trials. J Crohns Colitis. 2019;13(1):50–7. https://doi.org/10.1093/ecco-jcc/jjy125.

    Article  PubMed  Google Scholar 

  102. Feagan BG, Sandborn WJ, Danese S, et al. Ozanimod induction therapy for patients with moderate to severe Crohn’s Disease: a single-arm, phase 2, prospective observer-blinded endpoint study. Lancet Gastroenterol Hepatol. 2020;5:819–28.

    Article  PubMed  Google Scholar 

  103. Sandborn WJ, Feagan BG, Dhaens G, et al. True North Study Group. Ozanimod as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2021;385(14):1280–91. https://doi.org/10.1056/NEJMoa2033617.

    Article  CAS  PubMed  Google Scholar 

  104. Vermeire S, Chiorean M, Panés J, et al. Long-term safety and efficacy of etrasimod for ulcerative colitis: results from the open-label extension of the OASIS study. J Crohns Colitis. 2021;15(6):950–9. https://doi.org/10.1093/ecco-jcc/jjab016.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tsunemi S, Iwasaki T, Kitano S, Imado T, Miyazawa K, Sano H. Effects of the novel immunosuppressant FTY720 in a murine rheumatoid arthritis model. Clin Immunol. 2010;136(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  106. Jin J, Ji M, Fu R, et al. Sphingosine-1-phosphate receptor subtype 1 (S1P1) modulator IMMH001 regulates adjuvant- and collagen-induced arthritis. Front Pharmacol. 2019;10:1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feagan BG, Sandborn WJ, Gasink C, et al. UNITI–IM-UNITI Study Group. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375(20):1946–60. https://doi.org/10.1056/NEJMoa1602773.

    Article  CAS  PubMed  Google Scholar 

  108. Sands BE, Sandborn WJ, Panaccione R, O’Brien CD, Zhang H, Johanns J, Adedokun OJ, Li K, Peyrin-Biroulet L, Van Assche G, Danese S, Targan S, Abreu MT, Hisamatsu T, Szapary P, Marano C. UNIFI Study Group Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2019;381(13):1201–14. https://doi.org/10.1056/NEJMoa1900750.

    Article  CAS  PubMed  Google Scholar 

  109. Guillo L, D’Amico F, Danese S, Peyrin-Biroulet L. Ustekinumab for extra-intestinal manifestations of inflammatory bowel disease: a systematic literature review. J Crohns Colitis. 2021;15(7):1236–43. https://doi.org/10.1093/ecco-jcc/jjaa260.

    Article  PubMed  Google Scholar 

  110. Macaluso FS, Fries W, Viola A, Costantino G, Muscianisi M, Cappello M, Guida L, Giuffrida E, Magnano A, Pluchino D, Ferracane C, Magrì G, Di Mitri R, Mocciaro F, Privitera AC, Camilleri S, Garufi S, Renna S, Casà A, Scrivo B, Ventimiglia M, Orlando A. Effectiveness of ustekinumab on crohn’s disease associated spondyloarthropathy: real-world data from the sicilian network for inflammatory bowel diseases (SN-IBD). Expert Opin Biol Ther. 2020;20(11):1381–4. https://doi.org/10.1080/14712598.2020.1830057.

    Article  CAS  PubMed  Google Scholar 

  111. Macaluso FS, Orlando A, Cottone M. Anti-interleukin-12 and anti-interleukin-23 agents in Crohn’s disease. Expert Opin Biol Ther. 2019;19(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  112. Bowman EP, Chackerian AA, Cua DJ. Rationale and safety of anti-interleukin-23 and anti interleukin-17A therapy. Curr Opin Infect Dis. 2006;19(245–52):529.

    Google Scholar 

  113. Fieschi C, Casanova JL. The role of interleukin-12 in human infectious diseases: only a faint signature. Eur J Immunol. 2003;33(1461–4):531.

    Google Scholar 

  114. Meeran SM, Mantena SK, Meleth S, Elmets CA, Katiyar SK. Interleukin-12-deficient mice are 532 at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to 533 carcinomas. Mol Cancer Ther. 2006;5:825–32.

    Article  CAS  PubMed  Google Scholar 

  115. Mease PJ, Rahman P, Gottlieb AB, Kollmeier AP, Hsia EC, Xu XL, Sheng S, Agarwal P, Zhou B, Zhuang Y, van der Heijde D, McInnes IB. DISCOVER-2 Study Group Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10230):1126–36. https://doi.org/10.1016/S0140-6736(20)30263-4.

    Article  CAS  PubMed  Google Scholar 

  116. Deodhar A, Helliwell PS, Boehncke WH, Kollmeier AP, Hsia EC, Subramanian RA, Xu XL, Sheng S, Agarwal P, Zhou B, Zhuang Y, Ritchlin CT. DISCOVER-1 Study Group Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10230):1115–25. https://doi.org/10.1016/S0140-6736(20)30265-8.

    Article  CAS  PubMed  Google Scholar 

  117. Danese S, Sandborn WJ, Feagan BG, et al. The effect of guselkumab induction therapy on early clinical outcome measures in patients with Moderately to Severely Active Crohn’s Disease: Results from the phase 2 GALAXI 1 study (abstract)

  118. Hanžel J, D’Haens GR. Anti-interleukin-23 agents for the treatment of ulcerative colitis. Expert Opin Biol Ther. 2020;20(4):399–406. https://doi.org/10.1080/14712598.2020.1697227.

    Article  CAS  PubMed  Google Scholar 

  119. Sandborn WJ, Ferrante M, Bhandari BR, et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology. 2020;158(3):537-549.e10. https://doi.org/10.1053/j.gastro.2019.08.043.

    Article  CAS  PubMed  Google Scholar 

  120. Sands BE, Peyrin-Biroulet L, Kierkus J, et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with Crohn’s disease. Gastroenterology. 2022;162(2):495–508. https://doi.org/10.1053/j.gastro.2021.10.050.

    Article  CAS  PubMed  Google Scholar 

  121. Schreiber SW, Ferrante M, Panaccione R, Colombel JF, Hisamatsu T, et al. OP26 risankizumab induces early clinical remission and response in patients with moderate-to-severe Crohn’s disease: Results from the phase 3 ADVANCE and MOTIVATE studies. J Crohn’s Colitis. 2021;15(1):S026–7. https://doi.org/10.1093/ecco-jcc/jjab075.025.

    Article  Google Scholar 

  122. Papp KA, Blauvelt A, Bukhalo M, et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med. 2017;376(1551–60):541.

    Google Scholar 

  123. Gordon KB, Strober B, Lebwohl M, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet. 2018;392:650–61.

    Article  CAS  PubMed  Google Scholar 

  124. Langley RG, Tsai TF, Flavin S, et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: results of the randomized, double-blind, phase III NAVIGATE trial. Br J Dermatol. 2018;178(1):114–23. https://doi.org/10.1111/bjd.15750.

    Article  CAS  PubMed  Google Scholar 

  125. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40. https://doi.org/10.1084/jem.20041257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hueber W, Patel DD, Dryja T, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52–72. https://doi.org/10.1126/scitranslmed.3001107.

    Article  CAS  Google Scholar 

  127. Hueber W, Sands BE, Lewitzky S, et al. Secukinumab in Crohn’s Disease Study Group Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700.

    Article  CAS  PubMed  Google Scholar 

  128. Targan SR, Feagan B, Vermeire S, et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe crohn’s disease. Am J Gastroenterol. 2016;111(11):1599–607. https://doi.org/10.1038/ajg.2016.298.

    Article  CAS  PubMed  Google Scholar 

  129. Mease PJ, Helliwell PS, Hjuler KF, et al. Brodalumab in psoriatic arthritis: results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann Rheum Dis. 2021;80:185–93.

    Article  CAS  PubMed  Google Scholar 

  130. Kukol W, Jose LA, Marino D. P055 Development of Crohn’s disease with use of secukinumab. Am J Gastroenterol. 2019. https://doi.org/10.14309/01.ajg.0000578292.95094.87.

    Article  Google Scholar 

  131. Colombel JF, Sendid B, Jouault T, et al. Secukinumab failure in Crohn’s disease: the yeast connection? Gut. 2013;62:800–1.

    Article  CAS  PubMed  Google Scholar 

  132. Van de Kerkhof PC, Griffiths CE, Reich K, et al. Secukinumab long-term safety experience: a pooled analysis of 10 phase II and III clinical studies in patients with moderate to severe plaque psoriasis. J Am Acad Dermatol. 2016;75:83-98.e4.

    Article  PubMed  CAS  Google Scholar 

  133. Baeten D, Sieper J, Braun J, et al. MEASURE 1 Study Group. MEASURE 2 Study Group Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373:2534–48.

    Article  CAS  PubMed  Google Scholar 

  134. Tang C, Kakuta S, Shimizu K, et al. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat Immunol. 2018;19(7):755–65.

    Article  CAS  PubMed  Google Scholar 

  135. Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370:2377–86.

    Article  PubMed  CAS  Google Scholar 

  136. Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebocontrolled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367:495–507.

    Article  CAS  PubMed  Google Scholar 

  137. Kremer J, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E, et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2013;159:253–61.

    Article  PubMed  Google Scholar 

  138. Mease P, Hall S, FitzGerald O, van der Heijde D, Merola JF, Avila-Zapata F, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377:1537–50.

    Article  CAS  PubMed  Google Scholar 

  139. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377:1525–36.

    Article  CAS  PubMed  Google Scholar 

  140. Deodhar A, Sliwinska-Stanczyk P, Xu H, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2021;80:1004–13.

    Article  CAS  PubMed  Google Scholar 

  141. Sandborn WJ, Su C, Panes J. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;377(5):496–7. https://doi.org/10.1056/NEJMc1707500.

    Article  PubMed  Google Scholar 

  142. Sandborn WJ, Ghosh S, Panes J, Vranic I, Wang W, Niezychowski W. Study A3921043 Investigators A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12:1485–93.

    Article  CAS  PubMed  Google Scholar 

  143. Panés J, Sandborn WJ, Schreiber S, et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut. 2017;66:1049–59.

    Article  PubMed  CAS  Google Scholar 

  144. Ytterberg SR, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386:316–26.

    Article  CAS  PubMed  Google Scholar 

  145. U.S. Food and Drug Administration. FDA approves Boxed Warning about increased risk of blood clots and death with higher dose of arthritis and ulcerative colitis medicine tofacitinib (Xeljanz, Xeljanz XR). https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and (2021).

  146. Winthrop KL, Cohen SB. Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat Rev Rheumatol. 2022. https://doi.org/10.1038/s41584-022-00767-7.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Genovese MC, Kalunian K, Gottenberg JE, et al. Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy: the FINCH 2 randomized clinical trial. JAMA. 2019;322:315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kavanaugh A, Kremer J, Ponce L, et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann Rheum Dis. 2017;76:1009–19.

    Article  CAS  PubMed  Google Scholar 

  149. Westhovens R, Taylor PC, Alten R, et al. Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann Rheum Dis. 2017;76:998–1008.

    Article  CAS  PubMed  Google Scholar 

  150. Mease P, Coates LC, Helliwell PS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebocontrolled, phase 2 trial. Lancet. 2018;392:2367–77.

    Article  CAS  PubMed  Google Scholar 

  151. van der Heijde D, Baraliakos X, Gensler LS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392:2378–87.

    Article  PubMed  Google Scholar 

  152. Feagan BG, Danese S, Loftus EV Jr. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet. 2021;397(10292):2372–84. https://doi.org/10.1016/S0140-6736(21)00666-8.

    Article  CAS  PubMed  Google Scholar 

  153. Vermeire S, Schreiber S, Petryka R, et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet. 2017;389:266–75.

    Article  CAS  PubMed  Google Scholar 

  154. Mease PJ, Lertratanakul A, Anderson JK, Papp K, Van den Bosch F, Tsuji S, et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann Rheum Dis. 2020;2:2.

    Google Scholar 

  155. McInnes IB, Anderson JK, Magrey M, Merola JF, Liu Y, Kishimoto M, et al. Trial of upadacitinib and adalimumab for psoriatic arthritis. N Engl J Med. 2021;384:1227–39.

    Article  CAS  PubMed  Google Scholar 

  156. Vermeire, S et al. OP23 Efficacy and safety of upadacitinib as induction therapy in patients with moderately to severely active ulcerative colitis: results from phase 3 U-ACCOMPLISH study. ECCO presentation 2021

  157. Danese S. et al. OP24 Efficacy and safety of upadacitinib induction therapy in patients with Moderately to Severely Active Ulcerative Colitis: Results from the phase 3 U-ACHIEVE study. ECCO presentation 2021

  158. AbbVie. Data on File: ABVRRTI73568.

  159. Lasa JS, Olivera PA, Danese S, Peyrin-Biroulet L. Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(2):161–70. https://doi.org/10.1016/S2468-1253(21)00377-0.

    Article  PubMed  Google Scholar 

  160. Felice C, Leccese P, Scudeller L, et al. Red flags for appropriate referral to the gastroenterologist and the rheumatologist of patients with inflammatory bowel disease and spondyloarthritis. Clin Exp Immunol. 2019;196(1):123–38. https://doi.org/10.1111/cei.13246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rizzello F, Olivieri I, Armuzzi A, et al. Multidisciplinary management of spondyloarthritis-related immune-mediated inflammatory disease. Adv Ther. 2018;35(4):545–62. https://doi.org/10.1007/s12325-018-0672-6.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Schwartzman M, Ermann J, Kuhn KA, Schwartzman S, Weisman MH. Spondyloarthritis in inflammatory bowel disease cohorts: systematic literature review and critical appraisal of study designs. RMD Open. 2022;8(1): e001777. https://doi.org/10.1136/rmdopen-2021-001777.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Salvatore Macaluso.

Ethics declarations

Funding

The authors received no specific funding for this work.

Conflicts of interest

FSM served as an advisory board member and/or received lecture grants from AbbVie, Biogen, Galapagos, Janssen, MSD, Pfizer, Samsung Bioepis, and Takeda Pharmaceuticals. AO served as an advisory board member for AbbVie, Galapagos, MSD, Janssen, Pfizer, Takeda Pharmaceuticals, and received lecture grants from AbbVie, MSD, Sofar, Chiesi, Janssen, Pfizer, and Takeda Pharmaceuticals. AO served as an advisory board member for AbbVie, MSD, Janssen, Pfizer, Takeda Pharmaceuticals, and received lecture grants from AbbVie, MSD, Sofar, Chiesi, Janssen, Pfizer, and Takeda Pharmaceuticals. SR served as an advisory board member for AbbVie, Janssen and MSD Pharmaceuticals, and received lecture grants from AbbVie, Janssen, MSD and Takeda Pharmaceuticals. FC, MG, EMB, NM, GR, AC declared no conflicting interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

FC and MG drafted the article. FC, MG, EMB, NM, GR, AC were responsible for critical revision of the manuscript for important intellectual content. FSM and AO were responsible for study supervision. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crispino, F., Grova, M., Bruno, E.M. et al. Spondyloarthropathy in Inflammatory Bowel Disease: From Pathophysiology to Pharmacological Targets. Drugs 82, 1151–1163 (2022). https://doi.org/10.1007/s40265-022-01750-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-022-01750-y

Navigation